Skip to main content

Energy Homeostasis Regulation in Drosophila: A Lipocentric Perspective

  • Chapter
  • First Online:
Sensory and Metabolic Control of Energy Balance

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 52))

Abstract

The fruit fly Drosophila is a centenarian in research service, but a novice as an invertebrate model system for energy homeostasis research. The last couple of years, however, witnessed numerous technical advances driving the rise of this model organism in central areas of energy balance research such as food perception, feeding control, energy flux and lipometabolism. These studies demonstrate an unanticipated evolutionary conservation of genes and mechanisms governing central aspects of energy homeostasis. Accordingly, research on Drosophila promises both, a systems biology view on the regulatory network, which governs lifelong energy control in a complex eukaryotic organism as well as, important insights into the mammalian energy balance control with a potential impact on the diagnostic and therapeutic strategies in the treatment of human lipopathologies such as obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Anzi B, Sapin V, Waters C, Zinn K, Wyman RJ, Benzer S (2009) Obesity-blocking neurons in Drosophila. Neuron 63:329–341

    Article  PubMed  CAS  Google Scholar 

  • Arrese EL, Rivera L, Hamada M, Mirza S, Hartson SD, Weintraub S, Soulages JL (2008) Function and structure of lipid storage droplet protein 1 studied in lipoprotein complexes. Arch Biochem Biophys 473:42–47

    Article  PubMed  CAS  Google Scholar 

  • Baker KD, Thummel CS (2007) Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab 6:257–266

    Article  PubMed  CAS  Google Scholar 

  • Ballard SL, Jarolimova J, Wharton KA (2010) Gbb/BMP signaling is required to maintain energy homeostasis in Drosophila. Develop Biol 337:375–385

    Article  PubMed  CAS  Google Scholar 

  • Bass TM, Grandison RC, Wong R, Martinez P, Partridge L, Piper MDW (2007) Optimization of dietary restriction protocols in Drosophila. J Gerontol A Biol Sci Med Sci 62:1071–1081

    Article  PubMed  Google Scholar 

  • Bauer R, Voelzmann A, Breiden B, Schepers U, Farwanah H, Hahn I, Eckardt F, Sandhoff K, Hoch M (2009) Schlank, a member of the ceramide synthase family controls growth and body fat in Drosophila. EMBO J 28:3706–3716

    Article  PubMed  CAS  Google Scholar 

  • Belay AT, Scheiner R, So AK-C, Douglas SJ, Chakaborty-Chatterjee M, Levine JD, Sokolowski MB (2007) The foraging gene of Drosophila melanogaster: spatial-expression analysis and sucrose responsiveness. J Comp Neurol 504:570–582

    Article  PubMed  CAS  Google Scholar 

  • Beller M, Riedel D, Jänsch L, Dieterich G, Wehland J, Jäckle H, Kühnlein RP (2006) Characterization of the Drosophila lipid droplet subproteome. Mol Cell Proteomics 5:1082–1094

    Article  PubMed  CAS  Google Scholar 

  • Beller M, Sztalryd C, Southall N, Bell M, Jackle H, Auld DS, Oliver B (2008) COPI complex is a regulator of lipid homeostasis. PLoS Biol 6:e292

    Article  PubMed  Google Scholar 

  • Billeter J-C, Atallah J, Krupp JJ, Millar JG, Levine JD (2009) Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461:987–991

    Article  PubMed  CAS  Google Scholar 

  • Böhni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, Beckingham K, Hafen E (1999) Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97:865–875

    Article  PubMed  Google Scholar 

  • Buch S, Pankratz MJ (2009) Making metabolic decisions in Drosophila. Fly 3:74–77

    Article  PubMed  CAS  Google Scholar 

  • Buchmann J, Meyer C, Neschen S, Augustin R, Schmolz K, Kluge R, Al-Hasani H, Jurgens H, Eulenberg K, Wehr R et al (2007) Ablation of the cholesterol transporter adenosine triphosphate-binding cassette transporter G1 reduces adipose cell size and protects against diet-induced obesity. Endocrinology 148:1561–1573

    Article  PubMed  CAS  Google Scholar 

  • Buszczak M, Lu X, Segraves WA, Chang TY, Cooley L (2002) Mutations in the midway gene disrupt a Drosophila acyl coenzyme A: diacylglycerol acyltransferase. Genetics 160: 1511–1518

    PubMed  CAS  Google Scholar 

  • Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA (2001) Fat metabolism in insects. Annu Rev Nutr 21:23–46

    Article  PubMed  CAS  Google Scholar 

  • Cermelli S, Guo Y, Gross SP, Welte MA (2006) The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol 16:1783–1795

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee A, Tanoue S, Houl JH, Hardin PE (2010) Regulation of gustatory physiology and appetitive behavior by the Drosophila circadian clock. Curr Biol 20:300–309

    Article  PubMed  CAS  Google Scholar 

  • Chien S, Reiter LT, Bier E, Gribskov M (2002) Homophila: human disease gene cognates in Drosophila. Nucleic Acids Res 30:149–151

    Article  PubMed  CAS  Google Scholar 

  • Cobbe N, Marshall K, Rao S, Chang C, Di Cara F, Duca E, Vass S, Kassan A, Heck M (2009) The conserved metalloprotease invadolysin localizes to the surface of lipid droplets. J Cell Sci 122:3414–3423

    Article  PubMed  CAS  Google Scholar 

  • Diangelo J, Birnbaum M (2009) The regulation of fat cell mass by insulin in Drosophila melanogaster. Mol Cell Biol 29:6341–6352

    Article  PubMed  CAS  Google Scholar 

  • Doane WW (1960) Developmental physiology of the mutant female sterile(2)adipose of Drosophila melanogaster. I. Adult morphology, longevity, egg production, and egg lethality. J Exp Zool 145:1–21

    Article  PubMed  CAS  Google Scholar 

  • Dobrosotskaya IY, Seegmiller AC, Brown MS, Goldstein JL, Rawson RB (2002) Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science 296:879–883

    Article  PubMed  CAS  Google Scholar 

  • Ferrandon D, Imler J-L, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7:862–874

    Article  PubMed  CAS  Google Scholar 

  • Fischer J, Lefevre C, Morava E, Mussini JM, Laforet P, Negre-Salvayre A, Lathrop M, Salvayre R (2007) The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet 39:28–30

    Article  PubMed  CAS  Google Scholar 

  • Geminard C, Rulifson EJ, Leopold P (2009) Remote control of insulin secretion by fat cells in Drosophila. Cell Metab 10:199–207

    Article  PubMed  CAS  Google Scholar 

  • Gordon MD, Scott K (2009) Motor control in a Drosophila taste circuit. Neuron 61:373–384

    Article  PubMed  CAS  Google Scholar 

  • Grandison R, Piper M, Partridge L (2009). Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:1061–1064

    Google Scholar 

  • Grönke S, Beller M, Fellert S, Ramakrishnan H, Jäckle H, Kühnlein RP (2003) Control of fat storage by a Drosophila PAT domain protein. Curr Biol 13:603–606

    Article  PubMed  Google Scholar 

  • Grönke S, Mildner A, Fellert S, Tennagels N, Petry S, Müller G, Jäckle H, Kühnlein R (2005) Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 1:323–330

    Article  PubMed  Google Scholar 

  • Grönke S, Müller G, Hirsch J, Fellert S, Andreou A, Haase T, Jäckle H, Kühnlein R (2007) Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol 5:e137

    Article  PubMed  Google Scholar 

  • Grönke S, Clarke D-F, Broughton S, Andrews TD, Partridge L (2010) Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet 6:e1000857

    Article  PubMed  Google Scholar 

  • Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese RV (2008) Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657–661

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez E, Wiggins D, Fielding B, Gould AP (2007) Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445:275–280

    Article  PubMed  CAS  Google Scholar 

  • Hader T, Muller S, Aguilera M, Eulenberg K, Steuernagel A, Ciossek T, Kuhnlein R, Lemaire L, Fritsch R, Dohrmann C et al (2003) Control of triglyceride storage by a WD40/TPR-domain protein. EMBO Rep 4:511–516

    Article  PubMed  Google Scholar 

  • Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S et al (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG, Pan DA (2002) Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans 30:1064–1070

    Article  PubMed  CAS  Google Scholar 

  • Hoshizaki DK (2005). Fat-cell development. Comprehensive molecular insect science 2:315–345

    Google Scholar 

  • Hwangbo D, Gersham B, Tu M, Palmer M, Tatar M (2004) Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429:562–566

    Article  PubMed  CAS  Google Scholar 

  • Iijima K, Zhao L, Shenton C, Iijima-Ando K (2009) Regulation of energy stores and feeding by neuronal and peripheral CREB activity in Drosophila. PLoS One 4:e8498

    Article  PubMed  Google Scholar 

  • Isabel G, Martin JR, Chidami S, Veenstra JA, Rosay P (2005) AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am J Physiol Regul Integr Comp Physiol 288:R531–538

    Article  PubMed  CAS  Google Scholar 

  • Ja W, Carvalho G, Mak E, de la Rosa N, Fang A, Liong J, Brummel T, Benzer S (2007) Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci USA 104:8253–8256

    Article  PubMed  CAS  Google Scholar 

  • Johnson MB, Butterworth FM (1985) Maturation and aging of adult fat body and oenocytes in Drosophila as revealed by light microscopic morphometry. J Morphol 184:51–59

    Article  PubMed  CAS  Google Scholar 

  • Kamleh MA, Hobani Y, Dow JAT, Zheng L, Watson DG (2009) Towards a platform for the metabonomic profiling of different strains of Drosophila melanogaster using liquid chromatography-Fourier transform mass spectrometry. FEBS J 276:6798–6809

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Rulifson E (2004) Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 431:316–320

    Article  PubMed  CAS  Google Scholar 

  • Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51:468–471

    Article  PubMed  CAS  Google Scholar 

  • Kühnlein RP (2010) Drosophila as a lipotoxicity model organism – more than a promise? Biochim Biophys Acta 1801:215–221

    Article  PubMed  Google Scholar 

  • Kunte A, Matthews K, Rawson R (2006) Fatty acid auxotrophy in Drosophila larvae lacking SREBP. Cell Metab 3:439–448

    Article  PubMed  CAS  Google Scholar 

  • Lai CQ, Parnell LD, Arnett DK, Garcia-Bailo B, Tsai MY, Kabagambe EK, Straka RJ, Province MA, An P, Borecki IB et al (2009) WDTC1, the ortholog of Drosophila adipose gene, associates with human obesity, modulated by MUFA intake. Obesity (Silver Spring) 17:593–600

    Article  CAS  Google Scholar 

  • Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M, Kienesberger P, Strauss JG, Gorkiewicz G, Zechner R (2006) Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab 3:309–319

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Park J (2004) Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167:311–323

    Article  PubMed  CAS  Google Scholar 

  • Leopold P, Perrimon N (2007) Drosophila and the genetics of the internal milieu. Nature 450:186–188

    Article  PubMed  CAS  Google Scholar 

  • Ma R, Taruttis A, Ntziachristos V, Razansky D (2009) Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging. Opt Express 17:21414–21426

    Article  PubMed  CAS  Google Scholar 

  • McGuire SE, Roman G, Davis RL (2004) Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet 20:384–391

    Article  PubMed  CAS  Google Scholar 

  • Melcher C, Bader R, Pankratz MJ (2007) Amino acids, taste circuits, and feeding behavior in Drosophila: towards understanding the psychology of feeding in flies and man. J Endocr 192:467–472

    Article  PubMed  CAS  Google Scholar 

  • Meunier N, Belgacem YH, Martin J-R (2007) Regulation of feeding behaviour and locomotor activity by takeout in Drosophila. J Exp Biol 210:1424–1434

    Article  PubMed  Google Scholar 

  • Miller A (1950) The internal anatomy and histology of the imago of Drosophila melanogaster. In: Demerec M (ed) Biology of Drosophila. Cold Spring Harbour Laboratory, New York, pp 420–534

    Google Scholar 

  • Null B, Liu CW, Hedehus M, Conolly S, Davis RW (2008) High-resolution, in vivo magnetic resonance imaging of Drosophila at 18.8Tesla. PLoS One 3:e2817

    Article  PubMed  Google Scholar 

  • Palanker L, Tennessen JM, Lam G, Thummel CS (2009) Drosophila HNF4 regulates lipid mobilization and beta-oxidation. Cell Metab 9:228–239

    Article  PubMed  CAS  Google Scholar 

  • Pennington J, Wells M (2002) Triacylglycerol-rich lipophorins are found in the dipteran infraorder Culicomorpha, not just in mosquitoes. J Insect Sci 2:15

    PubMed  Google Scholar 

  • Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung Y-L, Schulze A (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8:224–236

    Article  PubMed  CAS  Google Scholar 

  • Pospisilik JA, Schramek D, Schnidar H, Cronin SJF, Nehme NT, Zhang X, Knauf C, Cani PD, Aumayr K, Todoric J et al (2010) Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140:148–160

    Article  PubMed  CAS  Google Scholar 

  • Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–1125

    Article  PubMed  CAS  Google Scholar 

  • Righi V, Apidianakis Y, Rahme LG, Tzika AA (2010). Magnetic resonance spectroscopy of live Drosophila melanogaster using magic angle spinning. J Vis Exp 38. http://www.jove.com/index/details.stp?id=1710, doi: 10.3791/1710

  • Rulifson EJ, Kim SK, Nusse R (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296:1118–1120

    Article  PubMed  CAS  Google Scholar 

  • Schweiger M, Lass A, Zimmermann R, Eichmann TO, Zechner R (2009) Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am J Physiol Endocrinol Metab 297:E289–E296

    Article  PubMed  CAS  Google Scholar 

  • Shingleton AW, Das J, Vinicius L, Stern DL (2005) The temporal requirements for insulin signaling during development in Drosophila. PLoS Biol 3:e289

    Article  PubMed  Google Scholar 

  • Sieber MH, Thummel CS (2009) The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila. Cell Metab 10:481–490

    Article  PubMed  CAS  Google Scholar 

  • Slaidina M, Delanoue R, Gronke S, Partridge L, Léopold P (2009) A Drosophila insulin-like peptide promotes growth during nonfeeding states. Develop Cell 17:874–884

    Article  CAS  Google Scholar 

  • St Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 3:176–188

    Article  PubMed  CAS  Google Scholar 

  • Suh J, Gao X, McKay J, McKay R, Salo Z, Graff J (2006) Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metab 3:25–34

    Article  PubMed  CAS  Google Scholar 

  • Suh J, Zeve D, McKay R, Seo J, Salo Z, Li R, Wang M, Graff J (2007) Adipose is a conserved dosage-sensitive antiobesity gene. Cell Metab 6:195–207

    Article  PubMed  CAS  Google Scholar 

  • Teleman AA (2010) Molecular mechanisms of metabolic regulation by insulin in Drosophila. Biochem J 425:13–26

    Article  CAS  Google Scholar 

  • Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, Marygold S, Millburn G, Osumi-Sutherland D, Schroeder A, Seal R et al (2009) FlyBase: enhancing Drosophila gene ontology annotations. Nucleic Acids Res 37:D555–559

    Article  PubMed  CAS  Google Scholar 

  • Ueyama M, Chertemps T, Labeur C, Wicker-Thomas C (2005) Mutations in the desat1 gene reduces the production of courtship stimulatory pheromones through a marked effect on fatty acids in Drosophila melanogaster. Insect Biochem Mol Biol 35:911–920

    Article  PubMed  CAS  Google Scholar 

  • Van Voorhies WA, Melvin RG, Ballard JWO, Williams JB (2008) Validation of manometric microrespirometers for measuring oxygen consumption in small arthropods. J Insect Physiol 54:1132–1137

    Article  PubMed  Google Scholar 

  • Vihervaara T, Puig O (2008) dFOXO regulates transcription of a Drosophila acid lipase. J Mol Biol 376:1215–1223

    Article  PubMed  CAS  Google Scholar 

  • Vinegoni C, Pitsouli C, Razansky D, Perrimon N, Ntziachristos V (2008) In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography. Nat Methods 5:45–47

    Article  PubMed  CAS  Google Scholar 

  • Werz C, Köhler K, Hafen E, Stocker H (2009) The Drosophila SH2B family adaptor Lnk acts in parallel to chico in the insulin signaling pathway. PLoS Genet 5:e1000596

    Article  PubMed  Google Scholar 

  • Wong R, Piper MDW, Wertheim B, Partridge L (2009) Quantification of food intake in Drosophila. PLoS One 4:e6063

    Article  PubMed  Google Scholar 

  • Wu JS, Luo L (2006) A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc 1:2583–2589

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Zheng X, Sehgal A (2008) Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila. Cell Metab 8:289–300

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Omatsu N, Morimoto E, Nakashima H, Ueno K, Tanaka T, Satouchi K, Hirose F, Osumi T (2007) CGI-58 facilitates lipolysis on lipid droplets but is not involved in the vesiculation of lipid droplets caused by hormonal stimulation. J Lipid Res 48:1078–1089

    Article  PubMed  CAS  Google Scholar 

  • Yang J, McCart C, Woods DJ, Terhzaz S, Greenwood KG, Ffrench-Constant RH, Dow JAT (2007) A Drosophila systems approach to xenobiotic metabolism. Physiol Genomics 30:223–231

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  PubMed  CAS  Google Scholar 

  • Zinke I, Schütz CS, Katzenberger JD, Bauer M, Pankratz MJ (2002) Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J 21:6162–6173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Herbert Jäckle for continuous support of this research line in his department. Hartmut Sebesse is acknowledged for expert assistance in the illustration layout. This work was supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald P. Kühnlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Kühnlein, R.P. (2011). Energy Homeostasis Regulation in Drosophila: A Lipocentric Perspective. In: Meyerhof, W., Beisiegel, U., Joost, HG. (eds) Sensory and Metabolic Control of Energy Balance. Results and Problems in Cell Differentiation, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14426-4_13

Download citation

Publish with us

Policies and ethics