Skip to main content

Perceptually Near Pawlak Partitions

  • Chapter
Transactions on Rough Sets XII

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 6190))

Abstract

The problem considered in this paper is how to compare perceptually indiscernible partitions of disjoint, non-empty sets such as pairs of digital images viewed as sets of points. Such partitions are called perceptual Pawlak partitions, named after Z. Pawlak, who introduced a attribute-based equivalence relation in 1981 (the well-known indiscernibility relation from rough set theory). The solution to the problem stems from an approach to pairwise comparison reminiscent of the G. Fechner’s 1860 approach to comparing perceptions in psychophysics experiments. For Fechner, one perception of an object is indistinguishable from the perception of a different object, if there is no perceptible difference in the particular sensed feature value of the objects, e.g., perceptions resulting from lifting small objects where the object feature is weight. In comparing visual perceptions, partitions of images determined by a particular form of indiscernibility relation \(\sim{}_{\mathcal B}\) are used. The L1 (Manhattan distance) norm form of what is known as a perceptual indiscernibility relation defined within the context of a perceptual system is used in this article to define what are known as perceptually indiscernible Pawlak partitions (PIPs). An application of PIPs and near sets is given in this article in terms of a new form of content-based image retrieval (CBIR). This article investigates the efficacy of perceptual CBIR using Hausdorff and Mahalanobis distance measures to determine the degree of correspondence between pairs of perceptual Pawlak partitions of digital images. The contribution of this article is the introduction of an approach to comparing perceptually indiscernible image partitions.

Many thanks to James F. Peters, Amir H. Meghdadi, Som Naimpally, Christopher Henry and Piotr Wasilewski for the suggestions and insights concerning topics in this paper. We especially want to thank Amir H. Meghdadi for the use of his implementation of near set theory in a comprehensive image comparison toolset. This research has been supported by the Natural Science & Engineering Research Council of Canada (NSERC) grant 185986.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pawlak, Z.: Classification of objects by means of attributes. Polish Academy of Sciences 429 (1981)

    Google Scholar 

  2. Pawlak, Z.: Rough sets. International J. Comp. Inform. Science 11, 341–356 (1982)

    Article  MATH  Google Scholar 

  3. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences 177, 28–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Information Sciences 177, 41–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fechner, G.: Elemente der Psychophysik. In: Elements of Psychophysics trans. by Adler, H.E. (ed.). Holt, Rinehart & Winston, London (1860/1966)

    Google Scholar 

  7. Peters, J., Ramanna, S.: Affinities between perceptual granules: Foundations and perspectives. In: Bargiela, A., Pedrycz, W. (eds.) Human-Centric Information Processing Through Granular Modelling. SCI, vol. 182, pp. 49–66. Springer, Berlin (2009)

    Chapter  Google Scholar 

  8. Peters, J.: Tolerance near sets and image correspondence. Int. J. of Bio-Inspired Computation 4(1), 239–445 (2009)

    Article  Google Scholar 

  9. Peters, J.: Corrigenda and addenda: Tolerance near sets and image correspondence. Int. J. Bio-Inspired Computation 2(5), 1–8 (2010) (in Press)

    Article  Google Scholar 

  10. Pal, S., Peters, J.: Rough Fuzzy Image Analysis: Foundations and Methodologies. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  11. Hausdorff, F.: Grundzüge der mengenlehre. Verlag Von Veit & Comp., Leipzig (1914)

    MATH  Google Scholar 

  12. Hausdorff, F.: Set theory. Chelsea Publishing Company, New York (1962)

    MATH  Google Scholar 

  13. Rogers, C.: Hausdorff Measures. Cambridge U. Press, Cambridge (1970)

    MATH  Google Scholar 

  14. Mahalanobis, P.: On tests and measures of group divergence i. theoretical formulae. J. and Proc. Asiat. Soc. of Bengal 26, 541–588 (1930)

    Google Scholar 

  15. Mahalanobis, P.: On the generalized distance in statistics. Proc. Nat. Institute of Science (Calcutta) 2, 49–55 (1936)

    MATH  Google Scholar 

  16. Mrózek, A., Plonka, L.: Rough sets in image analysis. Foundations of Computing and Decision Sciences F18(3-4), 268–273 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Pal, S., Mitra, P.: Multispectral image segmentation using rough set initialized em algorithm. IEEE Transactions on Geoscience and Remote Sensing 11, 2495–2501 (2002)

    Article  Google Scholar 

  18. Peters, J., Borkowski, M.: k-means indiscernibility over pixels. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 580–585. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Pal, S., Shankar, B.U., Mitra, P.: Granular computing, rough entropy and object extraction. Pattern Recognition Letters 26(16), 401–416 (2005)

    Article  Google Scholar 

  20. Borkowski, M., Peters, J.: Matching 2d image segments with genetic algorithms and approximation spaces. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 63–101. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Borkowski, M.: 2D to 3D Conversion with Direct Geometrical Search and Approximation Spaces. PhD thesis, Dept. Elec. Comp. Engg. (2007), http://wren.ee.umanitoba.ca/

  22. Maji, P., Pal, S.: Maximum class separability for rough-fuzzy c-means based brain mr image segmentation. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 114–134. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Mushrif, M., Ray, A.: Color image segmentation: Rough-set theoretic approach. Pattern Recognition Letters 29(4), 483–493 (2008)

    Article  Google Scholar 

  24. Hassanien, A., Abraham, A., Peters, J., Schaefer, G., Henry, C.: Rough sets and near sets in medical imaging: A review. IEEE Trans. Info. Tech. in Biomedicine 13(6), 955–968 (2009), doi:10.1109/TITB.2009.2017017

    Article  Google Scholar 

  25. Sen, D., Pal, S.: Generalized rough sets, entropy, and image ambiguity measures. IEEE Transactions on Systems, Man, and Cybernetics–PART B 39(1), 117–128 (2009)

    Article  Google Scholar 

  26. Malyszko, D., Stepaniuk, J.: Standard and fuzzy rough entropy clustering algorithms in image segmentation. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 409–418. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Sharawy, G.A., Ghali, N.I., Ghoneim, W.A.: Object-based image retrieval system based on rough set theory. IJCSNS International Journal of Computer Science and Network Security 9(1), 160–166 (2009)

    Google Scholar 

  28. Deselaers, T.: Image Retrieval, Object Recognition, and Discriminative Models. Ph.d. thesis, RWTH Aachen University (2008)

    Google Scholar 

  29. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: An experimental comparison. Information Retrieval 11(1), 77–107 (2008d)

    Article  Google Scholar 

  30. Christos, T., Nikolaos, A.L., George, E., Spiros, F.: On the perceptual organization of image databases using cognitive discriminative biplots. EURASIP Journal on Advances in Signal Processing, doi:10.1155/2007/68165

    Google Scholar 

  31. Su, Z., Zhang, H., Li, S., Ma, S.: Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning. IEEE Transactions on Image Processing 12(8), 924–937 (2003)

    Article  Google Scholar 

  32. Matthieu, C., Philippe, H.G., Sylvie, P.-F.: Stochastic exploration and active learning for image retrieval. Image and Vision Computing 25(1), 14–23 (2007)

    Article  Google Scholar 

  33. Peters, J.F.: Classification of objects by means of features. In: Proc. IEEE Symposium Series on Foundations of Computational Intelligence (IEEE SCCI 2007), Honolulu, Hawaii, pp. 1–8 (2007)

    Google Scholar 

  34. Peters, J., Wasilewski, P.: Foundations of near sets. Information Sciences. An International Journal 179, 3091–3109 (2009), doi:10.1016/j.ins.2009.04.018

    MathSciNet  MATH  Google Scholar 

  35. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Engelking, R.: General topology. Sigma series in pure mathematics. Heldermann Verlag, Berlin (1989)

    MATH  Google Scholar 

  37. Henry, C., Peters, J.: Near sets, Wikipedia (2009), http://en.wikipedia.org/wiki/Near_sets

  38. Pavel, M.: Fundamentals of Pattern Recognition, 2nd edn. Marcel Dekker, Inc., New York (1993)

    MATH  Google Scholar 

  39. Peters, J.: Near sets. General theory about nearness of objects. Applied Mathematical Sciences 1(53), 2029–2609 (2007)

    Google Scholar 

  40. Naimpally, S., Warrack, B.: Proximity Spaces. Cambridge University Press, Cambridge (1970); Cambridge Tract in Mathematics No. 59

    MATH  Google Scholar 

  41. DiMaio, G., Naimpally, S.: D-proximity spaces. Czech. Math. J. 41(116), 232–248 (1991)

    MathSciNet  MATH  Google Scholar 

  42. DiMaio, G., Naimpally, S.: Proximity approach to semi-metric and developable spaces. Pacific J. Math. 44, 93–105 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  43. Efremovič, V.: Infinitesimal spaces. Dokl. Akad. Nauk SSSR 76, 341–343 (1951)

    MathSciNet  Google Scholar 

  44. Efremovič, V.: The geometry of proximity. Mat. Sb. 31, 189–200 (1952)

    MathSciNet  Google Scholar 

  45. Efremovič, V., Švarc, A.: A new definition of uniform spaces. Metrization of proximity spaces. Dokl. Akad. Nauk SSSR 89, 393–396 (1953)

    MathSciNet  Google Scholar 

  46. Pták, P., Kropatsch, W.: Nearness in digital images and proximity spaces. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 69–77. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  47. Poincaré, J.H.: L’espace et la géomètrie. Revue de m’etaphysique et de morale 3, 631–646 (1895)

    MATH  Google Scholar 

  48. Peters, J.: Near sets. Special theory about nearness of objects. Fundamenta Informaticae 75(1-4), 407–433 (2007)

    MATH  Google Scholar 

  49. Henry, C., Peters, J.: Image pattern recognition using approximation spaces and near sets. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 475–482. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  50. Henry, C., Peters, J.: Perception-based image analysis. Int. J. of Bio-Inspired Computation 2(2) (2009) (in Press)

    Google Scholar 

  51. Henry, C., Peters, J.: Near set evaluation and recognition (near) system. Technical report, Computationa Intelligence Laboratory, University of Manitoba, UM CI (2009), Laboratory Technical Report No. TR-2009-015

    Google Scholar 

  52. Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(7), 710–732 (1992)

    Article  Google Scholar 

  53. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, Upper Saddle Rv. (2002), ISBN 0-20-118075-8

    Google Scholar 

  54. Meghdadi, A., Peters, J.: Content-based image retrieval using a tolerance near set approach to image similarity. Image and Vision Computing (2009) (under review)

    Google Scholar 

  55. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  56. Arai, R., Watanabe, S.: A quantitative method for comparing multi-agent-based simulations in feature space. In: Multi-Agent-Based Simulation IX: International Workshop, MAPS 2008, Estoril, Portugal, May 12-13, 2008, pp. 154–166. Springer, Heidelberg (2009) (revised selected papers)

    Chapter  Google Scholar 

  57. Wang, J.Z.: Simplicity-content-based image search engine. Content Based Image Retrieval Project (1995-2001)

    Google Scholar 

  58. Meghdadi, A., Peters, J., Ramanna, S.: Tolerance classes in measuring image resemblance. In: Velásquez, J.D., Ríos, S.A., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based and Intelligent Information and Engineering Systems. LNCS, vol. 5712, pp. 127–134. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  59. Muller, H., Muller, W., Squire, D., Marchand-Maillet, S., Pun, T.: Performance evaluation in content-based image retrieval: Overview and proposals. Pattern Recognition Letters 22(5), 593–601 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramanna, S. (2010). Perceptually Near Pawlak Partitions. In: Peters, J.F., Skowron, A., Słowiński, R., Lingras, P., Miao, D., Tsumoto, S. (eds) Transactions on Rough Sets XII. Lecture Notes in Computer Science, vol 6190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14467-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14467-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14466-0

  • Online ISBN: 978-3-642-14467-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics