Skip to main content

Recognizing d-Interval Graphs and d-Track Interval Graphs

  • Conference paper
Frontiers in Algorithmics (FAW 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6213))

Included in the following conference series:

Abstract

A d-interval is the union of d disjoint intervals on the real line. A d-track interval is the union of d disjoint intervals on d disjoint parallel lines called tracks, one interval on each track. As generalizations of the ubiquitous interval graphs, d-interval graphs and d-track interval graphs have wide applications, traditionally to scheduling and resource allocation, and more recently to bioinformatics. In this paper, we prove that recognizing d-track interval graphs is NP-complete for any constant d ≥ 2. This confirms a conjecture of Gyárfás and West in 1995. Previously only the complexity of the d = 2 case was known. Our proof in fact implies that several restricted variants of this graph recognition problem, i.e, recognizing balanced d-track interval graphs, unit d-track interval graphs, and (2,...,2) d-track interval graphs, are all NP-complete. This partially answers another question recently raised by Gambette and Vialette. We also prove that recognizing depth-two 2-track interval graphs is NP-complete, even for the unit case. In sharp contrast, we present a simple linear-time algorithm for recognizing depth-two unit d-interval graphs. These and other results of ours give partial answers to a question of West and Shmoys in 1984 and a similar question of Gyárfás and West in 1995. Finally, we give the first bounds on the track number and the unit track number of a graph in terms of the number of vertices, the number of edges, and the maximum degree, and link the two numbers to the classical concepts of arboricity.

Supported in part by NSF grant DBI-0743670.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, J., Exoo, G., Harary, F.: Covering and packing in graphs III: cyclic and acyclic invariants. Mathematica Slovaca 30, 405–417 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Alcón, L., Cerioli, M.R., de Figueiredo, C.M.H., Gutierrez, M., Meidanis, J.: Tree loop graphs. Discrete Applied Mathematics 155, 686–694 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N.: The linear arboricity of graphs. Israel Journal of Mathematics 62, 311–325 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreae, T.: On the unit interval number of a graph. Discrete Applied Mathematics 22, 1–7 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bafna, V., Narayanan, B., Ravi, R.: Nonoverlapping local alignments (weighted independent sets of axis-parallel rectangles). Discrete Applied Mathematics 71, 41–53 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balogh, J., Pluhár, A.: A sharp edge bound on the interval number of a graph. Journal of Graph Theory 32, 153–159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bar-Yehuda, R., Halldórsson, M.M., Naor, J.(S.), Shachnai, H., Shapira, I.: Scheduling split intervals. SIAM Journal on Computing 36, 1–15 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Butman, A., Hermelin, D., Lewenstein, M., Rawitz, D.: Optimization problems in multiple-interval graphs. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 268–277 (2007)

    Google Scholar 

  9. Crochemore, M., Hermelin, D., Landau, G.M., Rawitz, D., Vialette, S.: Approximating the 2-interval pattern problem. Theoretical Computer Science 395, 283–297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gambette, P., Vialette, S.: On restrictions of balanced 2-interval graphs. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 55–65. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Griggs, J.R.: Extremal values of the interval number of a graph, II. Discrete Mathematics 28, 37–47 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Griggs, J.R., West, D.B.: Extremal values of the interval number of a graph. SIAM Journal on Algebraic and Discrete Methods 1, 1–7 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gyárfás, A., West, D.B.: Multitrack interval graphs. Congressus Numerantium 109, 109–116 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Halldórsson, M.M., Karlsson, R.K.: Strip graphs: recognition and scheduling. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 137–146. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Jiang, M.: Approximation algorithms for predicting RNA secondary structures with arbitrary pseudoknots. IEEE/ACM Transactions on Computational Biology and Bioinformatics 7, 323–332 (2010)

    Article  Google Scholar 

  16. Joseph, D., Meidanis, J., Tiwari, P.: Determining DNA sequence similarity using maximum independent set algorithms for interval graphs. In: Nurmi, O., Ukkonen, E. (eds.) SWAT 1992. LNCS, vol. 621, pp. 326–337. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  17. Kumar, N., Deo, N.: Multidimensional interval graphs. Congressus Numerantium 102, 45–56 (1994)

    MathSciNet  MATH  Google Scholar 

  18. Maas, C.: Determining the interval number of a triangle-free graph. Computing 31, 347–354 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Roberts, F.S.: Graph Theory and Its Applications to Problems of Society. SIAM, Philadelphia (1987)

    Google Scholar 

  20. Trotter Jr., W.T., Harary, F.: On double and multiple interval graphs. Journal of Graph Theory 3, 205–211 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vialette, S.: On the computational complexity of 2-interval pattern matching problems. Theoretical Computer Science 312, 223–249 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. West, D.B.: A short proof of the degree bound for interval number. Discrete Mathematics 73, 309–310 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. West, D.B., Shmoys, D.B.: Recognizing graphs with fixed interval number is NP-complete. Discrete Applied Mathematics 8, 295–305 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, M. (2010). Recognizing d-Interval Graphs and d-Track Interval Graphs. In: Lee, DT., Chen, D.Z., Ying, S. (eds) Frontiers in Algorithmics. FAW 2010. Lecture Notes in Computer Science, vol 6213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14553-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14553-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14552-0

  • Online ISBN: 978-3-642-14553-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics