Skip to main content

Medical Implications of Sperm Nuclear Quality

  • Chapter
  • First Online:
Epigenetics and Human Reproduction

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

The sperm nucleus is essential in the appropriate transmission of the paternal genome. Therefore, it has long been recognized that one of the key components of the sperm nuclear quality is the quality of the genomic DNA delivered by the sperm cell. In addition, it has recently been uncovered that other important components of the quality of the sperm cell nucleus are represented by its proteome and its epigenome. Sperm genome quality implies a correct number of chromosomes and the integrity of the DNA sequence. Sperm nuclear proteome quality means an appropriate composition in nuclear proteins that organize and condense the male genome, including protamines and other chromatin-associated proteins. The specific organization of the male genome, together with appropriate DNA methylation, and other components of the epigenome such as modified histones and RNA, carried by the sperm cell, constitutes the sperm epigenome. This chapter reviews the current state of the art of the normal genomic, proteomic, and epigenetic sperm cell constitution and the proven and potential medical implications of its anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Hassan D, Koester F, Shoepper B et al (2006) Comet assay of cumulus cells and spermatozoa DNA status, and the relationship to oocyte fertilization and embryo quality following ICSI. Reprod Biomed Online 12:447–452

    Article  PubMed  CAS  Google Scholar 

  • Agbaje IM, McVicar CM, Schock BC et al (2008) Increased concentrations of the oxidative DNA adduct 7, 8-dihydro-8-oxo-2-deoxyguanosine in the germ-line of men with type 1 diabetes. Reprod Biomed Online 16:401–409

    Article  PubMed  CAS  Google Scholar 

  • Ahmad L, Jalali S, Shami SA, Akram Z (2007) Sperm preparation: DNA damage by comet assay in normo- and teratozoospermics. Arch Androl 53:325–338

    Article  PubMed  CAS  Google Scholar 

  • Ahmadi A, Ng SC (1999a) Destruction of protamine in human sperm inhibits sperm binding and penetration in the zona-free hamster penetration test but increases sperm head decondensation and male pronuclear formation in the hamster-ICSI assay. J Assist Reprod Genet 16:128–132

    Article  PubMed  CAS  Google Scholar 

  • Ahmadi A, Ng SC (1999b) Influence of sperm plasma membrane destruction on human sperm head decondensation and pronuclear formation. Arch Androl 42:1–7

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth C, Nixon B, Aitken RJ (2005) Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod 20:2261–2270

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth C, Nixon B, Jansen RP, Aitken RJ (2007) First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa. Hum Reprod 22:197–200

    Article  PubMed  CAS  Google Scholar 

  • Aitken RJ, Baker MA (2008) The role of proteomics in understanding sperm cell biology. Int J Androl 31:295–302

    Article  PubMed  CAS  Google Scholar 

  • Aitken RJ, Harkiss D, Buckingham D (1993) Relationship between iron-catalysed lipid peroxidation potential and human sperm function. J Reprod Fertil 98:257–265

    Article  PubMed  CAS  Google Scholar 

  • Aitken RJ, Buckingham DW, Brindle J (1995) Analysis of sperm movement in relation to the oxidative stress created by leukocytes in washed sperm preparations and seminal plasma. Hum Reprod 10:2061–2071

    PubMed  CAS  Google Scholar 

  • Aitken RJ, De Iuliis GN, McLachlan RI (2009) Biological and clinical significance of DNA damage in the male germ line. Int J Androl 32:46–56

    Article  PubMed  CAS  Google Scholar 

  • Alimi E, Martinage A, Arkhis A et al (1993) Amino acid sequence of the human intermediate basic protein 2 (HPI2) from sperm nuclei. Structural relationship with protamine P2. Eur J Biochem 214:445–450

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JG, Sharma RK, Ollero M et al (2002) Increased DNA damage in sperm from leukocytospermic semen samples as determined by the sperm chromatin structure assay. Fertil Steril 78:319–329

    Article  PubMed  Google Scholar 

  • Ammer H, Henschen A, Lee CH (1986) Isolation and amino-acid sequence analysis of human sperm protamines P1 and P2. Occurrence of two forms of protamine P2. Biol Chem Hoppe Seyler 367:515–522

    Article  PubMed  CAS  Google Scholar 

  • Antinori M, Licata E, Dani G et al (2008) Intracytoplasmic morphologically selected sperm injection: a prospective randomized trial. Reprod Biomed Online 16:835–841

    Article  PubMed  Google Scholar 

  • Anton E, Vidal F, Blanco J (2007) Role of sperm FISH studies in the genetic reproductive advice of structural reorganization carriers. Hum Reprod 22:2088–2092

    Article  PubMed  CAS  Google Scholar 

  • Anway MD, Skinner MK (2008) Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod Biomed Online 16:23–25

    Article  PubMed  Google Scholar 

  • Aoki VW, Carrell DT (2003) Human protamines and the developing spermatid: their structure, function, expression and relationship with male infertility. Asian J Androl 5:315–324, Review

    PubMed  CAS  Google Scholar 

  • Aoki VW, Liu L, Carrell DT (2005a) Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod 20:1298–1306

    Article  PubMed  CAS  Google Scholar 

  • Aoki VW, Moskovtsev SI, Willis J et al (2005b) DNA integrity is compromised in protamine-deficient human sperm. J Androl 26:741–748

    Article  PubMed  CAS  Google Scholar 

  • Aoki VW, Liu L, Jones KP et al (2006) Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril 86:1408–1415

    Article  PubMed  CAS  Google Scholar 

  • Aravindan GR, Bjordahl J, Jost LK, Evenson DP (1997) Susceptibility of human sperm to in situ DNA denaturation is strongly correlated with DNA strand breaks identified by single-cell electrophoresis. Exp Cell Res 236:231–237

    Article  PubMed  CAS  Google Scholar 

  • Arkhis A, Martinage A, Sautiere P, Chevaillier P (1991) Molecular structure of human protamine P4 (HP4), a minor basic protein of human sperm nuclei. Eur J Biochem 200:387–392

    Article  PubMed  CAS  Google Scholar 

  • Arnedo N, Templado C, Sánchez-Blanque Y et al (2006) Sperm aneuploidy in fathers of Klinefelter’s syndrome offspring assessed by multicolour fluorescent in situ hybridization using probes for chromosomes 6, 13, 18, 21, 22, X and Y. Hum Reprod 21:524–528

    Article  PubMed  Google Scholar 

  • Arpanahi A, Brinkworth M, Iles D et al (2009) Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 19:1338–1349

    Article  PubMed  CAS  Google Scholar 

  • Auger J, Mesbah M, Huber C, Dadoune JP (1990) Aniline blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Int J Androl 13:452–462

    Article  PubMed  CAS  Google Scholar 

  • Baccetti B, Afzelius BA (1976) The biology of the sperm cell. Monogr Dev Biol 10:1–254

    PubMed  Google Scholar 

  • Bach O, Glander HJ, Scholz G, Schwarz J (1990) Electrophoretic patterns of spermatozoal nucleoproteins (NP) in fertile men and infertility patients and comparison with NP of somatic cells. Andrologia 22:217–224

    Article  PubMed  CAS  Google Scholar 

  • Baker MA, Witherdin R, Hetherington L et al (2005) Identification of post-translational modifications that occur during sperm maturation using difference in two-dimensional gel electrophoresis. Proteomics 5:1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Baker MA, Reeves G, Hetherington L et al (2007) Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl 1:524–532

    Article  PubMed  CAS  Google Scholar 

  • Baker MA, Hetherington L, Reeves GM, Aitken RJ (2008a) The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics 8:1720–1730

    Article  PubMed  CAS  Google Scholar 

  • Baker MA, Hetherington L, Reeves G et al (2008b) The rat sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics 8:2312–2321

    Article  PubMed  CAS  Google Scholar 

  • Bakos HW, Thompson JG, Feil D, Lane M (2008) Sperm DNA damage is associated with assisted reproductive technology pregnancy. Int J Androl 31:518–526

    Article  PubMed  CAS  Google Scholar 

  • Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8:227

    Article  PubMed  CAS  Google Scholar 

  • Balhorn R, Reed S, Tanphaichitr N (1988) Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia 44:52–55

    Article  PubMed  CAS  Google Scholar 

  • Balhorn R, Corzett M, Mazrimas JA (1992) Formation of intraprotamine disulfides in vitro. Arch Biochem Biophys 296:384–393

    Article  PubMed  CAS  Google Scholar 

  • Banks S, King SA, Irvine DS, Saunders PT (2005) Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction 129:505–514

    Article  PubMed  CAS  Google Scholar 

  • Barnes DE, Lindahl T (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 38:445–476

    Article  PubMed  CAS  Google Scholar 

  • Bartoov B, Berkovitz A, Eltes F et al (2003) Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril 80:1413–1419

    Article  PubMed  Google Scholar 

  • Bélaïche D, Loir M, Kruggle W, Sautière P (1987) Isolation and characterization of two protamines St1 and St2 from stallion spermatozoa, and amino-acid sequence of the major protamine St1. Biochim Biophys Acta 913:145–149

    Article  PubMed  Google Scholar 

  • Bellvé AR, McKay DJ, Renaux BS, Dixon GH (1988) Purification and characterization of mouse protamines P1 and P2. Amino acid sequence of P2. Biochemistry 27:2890–2897

    Article  PubMed  Google Scholar 

  • Belokopytova IA, Kostyleva EI, Tomilin AN, Vorob’ev VI (1993) Human male infertility may be due to a decrease of the protamine P2 content in sperm chromatin. Mol Reprod Dev 34:53–57

    Article  PubMed  CAS  Google Scholar 

  • Bench GS, Friz AM, Corzett MH et al (1996) DNA and total protamine masses in individual sperm from fertile mammalian subjects. Cytometry 23:263–271

    Article  PubMed  CAS  Google Scholar 

  • Bench G, Corzett MH, De Yebra L et al (1998) Protein and DNA contents in sperm from an infertile human male possessing protamine defects that vary over time. Mol Reprod Dev 50:345–353

    Article  PubMed  CAS  Google Scholar 

  • Benchaib M, Braun V, Lornage J et al (2003) Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod 18:1023–1028

    Article  PubMed  Google Scholar 

  • Benchaib M, Lornage J, Mazoyer C et al (2007) Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril 87:93–100

    Article  PubMed  CAS  Google Scholar 

  • Berkovitz A, Eltes F, Yaari S et al (2005) The morphological normalcy of the sperm nucleus and pregnancy rate of intracytoplasmic injection with morphologically selected sperm. Hum Reprod 20:185–190

    Article  PubMed  Google Scholar 

  • Berkovitz A, Eltes F, Lederman H et al (2006) How to improve IVF-ICSI outcome by sperm selection. Reprod Biomed Online 12:634–638

    Article  PubMed  CAS  Google Scholar 

  • Bianchi F, Rousseaux-Prevost R, Sautiere P, Rousseaux J (1992) P2 protamines from human sperm are zinc -finger proteins with one CYS2/HIS2 motif. Biochem Biophys Res Commun 182:540–547

    Article  PubMed  CAS  Google Scholar 

  • Biermann K, Steger K (2007) Epigenetics in male germ cells. J Androl 28:466–480

    Article  PubMed  CAS  Google Scholar 

  • Bizzaro D, Manicardi GC, Bianchi PG et al (1998) In-situ competition between protamine and fluorochromes for sperm DNA. Mol Hum Reprod 4:127–132

    Article  PubMed  CAS  Google Scholar 

  • Bjorndahl L, Kvist U (2010) Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod 16:23–29

    Article  PubMed  CAS  Google Scholar 

  • Blanchard Y, Lescoat D, Le Lannou D (1990) Anomalous distribution of nuclear basic proteins in round-headed human spermatozoa. Andrologia 22:549–555

    Article  PubMed  CAS  Google Scholar 

  • Borini A, Tarozzi N, Bizzaro D et al (2006) Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod 21:2876–2881

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Rajmil O, Egozcue J, Templado C (2003) Linear increase of structural and numerical chromosome 9 abnormalities in human sperm regarding age. Eur J Hum Genet 11:754–759

    Article  PubMed  CAS  Google Scholar 

  • Bower PA, Yelick PC, Hecht NB (1987) Both P1 and P2 protamine genes are expressed in mouse, hamster, and rat. Biol Reprod 37:479–488

    Article  PubMed  CAS  Google Scholar 

  • Bungum M, Humaidan P, Spano M et al (2004) The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod 19:1401–1408

    Article  PubMed  CAS  Google Scholar 

  • Bungum M, Humaidan P, Axmon A et al (2007) Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod 22:174–179

    Article  PubMed  CAS  Google Scholar 

  • Bungum M, Spanò M, Humaidan P et al (2008) Sperm chromatin structure assay parameters measured after density gradient centrifugation are not predictive for the outcome of ART. Hum Reprod 23:4–10

    Article  PubMed  CAS  Google Scholar 

  • Bustos-Obregón E, Leiva S (1983) Chromatin packing in normal and teratozoospermic human ejaculated spermatozoa. Andrologia 15:468–478

    Article  PubMed  Google Scholar 

  • Butler MG (2009) Genomic imprinting disorders in humans: a mini-review. J Assist Reprod Genet 26:477–486

    Article  PubMed  Google Scholar 

  • Carlsen E, Giwercman A, Keiding N, Skakkebaek NE (1992) Evidence for decreasing quality of semen during past 50 years. BMJ 305:609–613

    Article  PubMed  CAS  Google Scholar 

  • Carrell DT (2008) Contributions of spermatozoa to embryogenesis: assays to evaluate their genetic and epigenetic fitness. Reprod Biomed Online 16:474–484

    Article  PubMed  CAS  Google Scholar 

  • Carrell DT, Liu L (2001) Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl 22:604–610

    PubMed  CAS  Google Scholar 

  • Carrell DT, Emery BR, Liu L (1999) Characterization of aneuploidy rates, protamine levels, ultrastructure, and functional ability of round-headed sperm from two siblings and implications for intracytoplasmic sperm injection. Fertil Steril 71:511–516

    Article  PubMed  CAS  Google Scholar 

  • Carrell DT, Emery BR, Hammoud S (2008) The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome. Int J Androl 31:537–545

    Article  PubMed  Google Scholar 

  • Chakravarty S, Bansal P, Sutovsky P, Gupta SK (2008) Role of proteasomal activity in the induction of acrosomal exocytosis in human spermatozoa. Reprod Biomed Online 16:391–400

    Article  PubMed  CAS  Google Scholar 

  • Chatzimeletiou K, Morrison EE, Prapas N (2008) The centrosome and early embryogenesis: clinical insights. Reprod Biomed Online 16:485–491

    Article  PubMed  Google Scholar 

  • Chavarro JE, Toth TL, Wright DL et al (2009) Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic. Fertil Steril. doi:10.1016/j.fertnstert.2009.01.100

    PubMed  Google Scholar 

  • Check JH, Graziano V, Cohen R et al (2005) Effect of an abnormal sperm chromatin structural assay (SCSA) on pregnancy outcome following (IVF) with ICSI in previous IVF failures. Arch Androl 51:121–124

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Cao J, Fei RR et al (2005) Analysis of protamine content in patients with asthenozoospermia. Zhonghua Nan Ke Xue 11:587–589

    PubMed  CAS  Google Scholar 

  • Chevaillier P, Mauro N, Feneux D et al (1987) Anomalous protein complement of sperm nuclei in some infertile men. Lancet 2:806–807

    Article  PubMed  CAS  Google Scholar 

  • Chiamchanya C, Kaewnoonual N, Visutakul P (2010) Comparative study of the effects of three semen preparation media on semen analysis, DNA damage and protamine deficiency, and the correlation between DNA integrity and sperm parameters. Asian J Androl 12:271–277

    Article  PubMed  Google Scholar 

  • Chohan KR, Griffin JT, Lafromboise M et al (2006) Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl 27:53–59

    Article  PubMed  CAS  Google Scholar 

  • Choi SK, Yoon SR, Calabrese P, Arnheim N (2008) A germ-line-selective advantage rather than an increased mutation rate can explain some unexpectedly common human disease mutations. Proc Natl Acad Sci USA 105:10143–10148

    Article  PubMed  CAS  Google Scholar 

  • Codrington AM, Hales BF, Robaire B (2007) Exposure of male rats to cyclophosphamide alters the chromatin structure and basic proteome in spermatozoa. Hum Reprod 22:1431–1442

    Article  PubMed  CAS  Google Scholar 

  • Colleu D, Lescoat D, Boujard D, Le Lannou D (1988) Human spermatozoal nuclear maturity in normozoospermia and asthenozoospermia. Arch Androl 21:155–162

    Article  PubMed  CAS  Google Scholar 

  • Colleu D, Lescoat D, Gouranton J (1996) Nuclear maturity of human spermatozoa selected by swim-up or by Percoll gradient centrifugation procedures. Fertil Steril 65:160–164

    PubMed  CAS  Google Scholar 

  • Conrad M, Moreno SG, Sinowatz F et al (2005) The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol 25:7637–7644

    Article  PubMed  CAS  Google Scholar 

  • Corzett M, Mazrimas J, Balhorn R (2002) Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev 61:519–527

    Article  PubMed  CAS  Google Scholar 

  • Cox GF, Burger JL, Mau UA (2002) Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 71:162–164

    Article  PubMed  CAS  Google Scholar 

  • Daris B, Goropevsek A, Hojnik N, Vlaisavljević V (2010) Sperm morphological abnormalities as indicators of DNA fragmentation and fertilization in ICSI. Arch Gynecol Obstet 281:363–367

    Article  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • De Iuliis GN, Newey RJ, King BV, Aitken RJ (2009) Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS ONE 4:e6446

    Article  PubMed  CAS  Google Scholar 

  • de Mateo S, Martinez-Heredia J, Estanyol JM et al (2007) Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics 7:4264–4277

    Article  PubMed  Google Scholar 

  • de Mateo S, Gázquez C, Guimerà M et al (2009) Protamine 2 precursors (Pre-P2), protamine 1 to protamine 2 ratio (P1/P2), and assisted reproduction outcome. Fertil Steril 91:715–722

    Article  PubMed  CAS  Google Scholar 

  • de Yebra L, Oliva R (1993) Rapid analysis of mammalian sperm nuclear proteins. Anal Biochem 209:201–203

    Article  PubMed  Google Scholar 

  • de Yebra L, Ballescà JL, Vanrell JA et al (1993) Complete selective absence of protamine P2 in humans. J Biol Chem 268:10553–10557

    PubMed  Google Scholar 

  • de Yebra L, Ballescà JL, Vanrell JA et al (1998) Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril 69:755–759

    Article  PubMed  Google Scholar 

  • DeBaun MR, Neimitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72:156–160

    Article  PubMed  CAS  Google Scholar 

  • Derijck A, van der Heijden G, Giele M et al (2008) DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum Mol Genet 17:1922–1937

    Article  PubMed  CAS  Google Scholar 

  • Dirican EK, Ozgün OD, Akarsu S et al (2008) Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Genet 25:375–381

    Article  PubMed  Google Scholar 

  • Domínguez-Fandos D, Camejo MI, Ballescà JL, Oliva R (2007) Human sperm DNA fragmentation: correlation of TUNEL results as assessed by flow cytometry and optical microscopy. Cytom A 71:1011–1018

    Article  CAS  Google Scholar 

  • Donnelly ET, O’Connell M, McClure N, Lewis SE (2000) Differences in nuclear DNA fragmentation and mitochondrial integrity of semen and prepared human spermatozoa. Hum Reprod 15:1552–1561

    Article  PubMed  CAS  Google Scholar 

  • Duran EH, Morshedi M, Taylor S, Oehninger S (2002) Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod 17:3122–3128

    Article  PubMed  CAS  Google Scholar 

  • Edelstein A, Yavetz H, Kleiman SE et al (2008) Deoxyribonucleic acid-damaged sperm in cryopreserved-thawed specimens from cancer patients and healthy men. Fertil Steril 90:205–208

    Article  PubMed  CAS  Google Scholar 

  • Engel S, Weber H, Petzoldt R et al (2001) An improved method of sperm selection by glass wool filtration. Andrologia 33:223–230

    Article  PubMed  CAS  Google Scholar 

  • Erel CT, Senturk LM, Irez T et al (2000) Sperm-preparation techniques for men with normal and abnormal semen analysis. A comparison. J Reprod Med 45:917–922

    PubMed  CAS  Google Scholar 

  • Erenpreiss J, Hlevicka S, Zalkalns J, Erenpreisa J (2002) Effect of leukocytospermia on sperm DNA integrity: a negative effect in abnormal semen samples. J Androl 23:717–723

    PubMed  Google Scholar 

  • Evenson DP, Wixon R (2006) Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology 65:979–991

    Article  PubMed  CAS  Google Scholar 

  • Evenson DP, Darzynkiewicz Z, Melamed MR (1980) Comparison of human and mouse sperm chromatin structure by flow cytometry. Chromosoma 78:225–238

    Article  PubMed  CAS  Google Scholar 

  • Evenson DP, Jost LK, Corzett M, Balhorn R (2000) Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. J Androl 21:739–746

    PubMed  CAS  Google Scholar 

  • Farfalli VI, Magli MC, Ferraretti AP, Gianaroli L (2007) Role of aneuploidy on embryo implantation. Gynecol Obstet Invest 64:161–165

    Article  PubMed  CAS  Google Scholar 

  • Fariello RM, Del Giudice PT, Spaine DM et al (2009) Effect of leukocytospermia and processing by discontinuous density gradient on sperm nuclear DNA fragmentation and mitochondrial activity. J Assist Reprod Genet 26:151–157

    Article  PubMed  Google Scholar 

  • Fernández JL, Muriel L, Rivero MT et al (2003) The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl 24:59–66

    PubMed  Google Scholar 

  • Filatov MV, Semenova EV, Vorob’eva OA et al (1999) Relationship between abnormal sperm chromatin packing and IVF results. Mol Hum Reprod 5:825–830

    Article  PubMed  CAS  Google Scholar 

  • Fleming SD, Ilad RS, Griffin AM et al (2008) Prospective controlled trial of an electrophoretic method of sperm preparation for assisted reproduction: comparison with density gradient centrifugation. Human Reprod 23:2646–2651

    Article  CAS  Google Scholar 

  • Fraga CG, Motchnik PA, Shigenaga MK et al (1991) Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci USA 88:11003–11006

    Article  PubMed  CAS  Google Scholar 

  • Franken DR, Franken CJ, de la Guerre H et al (1999) Normal sperm morphology and chromatin packaging: comparison between aniline blue and chromomycin A3 staining. Andrologia 31:361–366

    Article  PubMed  CAS  Google Scholar 

  • Frydman N, Prisant N, Hesters L et al (2008) Adequate ovarian follicular status does not prevent the decrease in pregnancy rates associated with high sperm DNA fragmentation. Fertil Steril 89:92–97

    Article  PubMed  CAS  Google Scholar 

  • Gallegos G, Ramos B, Santiso R et al (2008) Sperm DNA fragmentation in infertile men with genitourinary infection by Chlamydia trachomatis and mycoplasma. Fertil Steril 90:328–334

    Article  PubMed  Google Scholar 

  • Gamble SC, Chotai D, Odontiadis M (2007) Prohibitin, a protein downregulated by androgens, represses androgen receptor activity. Oncogene 26:1757–1768

    Article  PubMed  CAS  Google Scholar 

  • Gardiner-Garden M, Ballesteros M, Gordon M, Tam PP (1998) Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol Cell Biol 18:3350–3356

    PubMed  CAS  Google Scholar 

  • Garrido N, Remohí J, Martínez-Conejero JA et al (2008) Contribution of sperm molecular features to embryo quality and assisted reproduction success. Reprod Biomed Online 17:855–865

    Article  PubMed  CAS  Google Scholar 

  • Gatewood JM, Cook GR, Balhorn R et al (1987) Sequence-specific packaging of DNA in human sperm chromatin. Science 236:962–964

    Article  PubMed  CAS  Google Scholar 

  • Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z (1993) Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res 207:202–205

    Article  PubMed  CAS  Google Scholar 

  • Gosálvez J, Cortés-Gutierez E, López-Fernández C et al (2009) Sperm deoxyribonucleic acid fragmentation dynamics in fertile donors. Fertil Steril 92:170–173

    Article  PubMed  CAS  Google Scholar 

  • Greco E, Iacobelli M, Rienzi L et al (2005a) Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 26:349–353

    Article  PubMed  CAS  Google Scholar 

  • Greco E, Romano S, Iacobelli M et al (2005b) ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod 20:2590–2594

    Article  PubMed  CAS  Google Scholar 

  • Greco E, Scarselli F, Iacobelli M et al (2005c) Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod 20:226–230

    Article  PubMed  Google Scholar 

  • Gur Y, Breitbart H (2008) Protein synthesis in sperm: dialog between mitochondria and cytoplasm. Mol Cell Endocrinol 282:45–55

    Article  PubMed  CAS  Google Scholar 

  • Gusse M, Sautière P, Bélaiche D et al (1986) Purification and characterization of nuclear basic proteins of human sperm. Biochim Biophys Acta 884:124–134

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Ward DC (1995) Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp Cell Res 219:604–611

    Article  PubMed  CAS  Google Scholar 

  • Hammadeh ME, al-Hasani S, Stieber M et al (1996) The effect of chromatin condensation (aniline blue staining) and morphology (strict criteria) of human spermatozoa on fertilization, cleavage and pregnancy rates in an intracytoplasmic sperm injection programme. Hum Reprod 11:2468–2471

    Article  PubMed  CAS  Google Scholar 

  • Hammadeh ME, Stieber M, Haidl G, Schmidt W (1998) Association between sperm cell chromatin condensation, morphology based on strict criteria, and fertilization, cleavage and pregnancy rates in an IVF program. Andrologia 30:29–35

    Article  PubMed  CAS  Google Scholar 

  • Hammadeh ME, al-Hasani S, Doerr S et al (1999) Comparison between chromatin condensation and morphology from testis biopsy extracted and ejaculated spermatozoa and their relationship to ICSI outcome. Hum Reprod 14:363–367

    Article  PubMed  CAS  Google Scholar 

  • Hammadeh ME, Kühnen A, Amer AS et al (2001) Comparison of sperm preparation methods: effect on chromatin and morphology recovery rates and their consequences on the clinical outcome after in vitro fertilization embryo transfer. Int J Androl 24:360–368

    Article  PubMed  CAS  Google Scholar 

  • Hammadeh ME, Radwan M, Al-Hasani S et al (2006) Comparison of reactive oxygen species concentration in seminal plasma and semen parameters in partners of pregnant and non-pregnant patients after IVF/ICSI. Reprod Biomed Online 13:696–706

    Article  PubMed  CAS  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H (2009a) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    PubMed  CAS  Google Scholar 

  • Hammoud SS, Purwar J, Pflueger C et al (2009b) Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. doi:10.1016/j.fertnstert.2009.09.010

    Google Scholar 

  • Hammoud S, Liu L, Carrell DT (2009c) Protamine ratio and the level of histone retention in sperm selected from a density gradient preparation. Andrologia 41:88–94

    Article  PubMed  CAS  Google Scholar 

  • Hazout A, Dumont-Hassan M, Junca AM et al (2006) High-magnification ICSI overcomes paternal effect resistant to conventional ICSI. Reprod Biomed Online 12:19–25

    Article  PubMed  Google Scholar 

  • Hazzouri M, Rousseaux S, Mongelard F et al (2000) Genome organization in the human sperm nucleus studied by FISH and confocal microscopy. Mol Reprod 55:307–315

    Article  CAS  Google Scholar 

  • Henkel R, Kierspel E, Hajimohammad M et al (2003) DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod Biomed Online 7:477–484

    Article  PubMed  Google Scholar 

  • Henkel R, Hajimohammad M, Stalf T et al (2004) Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril 81:965–972

    Article  PubMed  CAS  Google Scholar 

  • Høst E, Lindenberg S, Smidt-Jensen S (2000a) DNA strand breaks in human spermatozoa: correlation with fertilization in vitro in oligozoospermic men and in men with unexplained infertility. Acta Obstet Gynecol Scand 79:189–193

    Article  PubMed  Google Scholar 

  • Høst E, Lindenberg S, Smidt-Jensen S (2000b) The role of DNA strand breaks in human spermatozoa used for IVF and ICSI. Acta Obstet Gynecol Scand 79:559–563

    Article  PubMed  Google Scholar 

  • Hsieh YY, Chang CC, Lin CS (2006) Seminal malondialdehyde concentration but not glutathione peroxidase activity is negatively correlated with seminal concentration and motility. Int J Biol Sci 2:23–29

    Article  PubMed  CAS  Google Scholar 

  • Huang CC, Lin DP, Tsao HM et al (2005) Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril 84:130–140

    Article  PubMed  Google Scholar 

  • Irvine DS, Twigg JP, Gordon EL et al (2000) DNA integrity in human spermatozoa: relationships with semen quality. J Androl 21:33–44

    PubMed  CAS  Google Scholar 

  • Iuchi Y, Kaneko T, Matsuki S et al (2003) Concerted changes in the YB2/RYB-a protein and protamine 2 messenger RNA in the mouse testis under heat stress. Biol Reprod 68:129–135

    Article  PubMed  CAS  Google Scholar 

  • Jager S (1990) Sperm nuclear stability and male infertility. Arch Androl 23:253–259

    Article  Google Scholar 

  • Jakab A, Sakkas D, Delpiano E et al (2005) Intracytoplasmic sperm injection: a novel selection method for sperm with normal frequency of chromosomal aneuploidies. Fertil Steril 84:1665–1673

    Article  PubMed  Google Scholar 

  • Jaroudi S, Kakourou G, Cawood S et al (2009) Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum Reprod 24:2649–2655

    Article  PubMed  CAS  Google Scholar 

  • Jedrzejczak P, Taszarek-Hauke G, Hauke J et al (2008) Prediction of spontaneous conception based on semen parameters. Int J Androl 31:499–507

    Article  PubMed  Google Scholar 

  • Junca AM, Cohen-Bacrie P, Belloc S et al (2009) Teratozoospermia at the time of intracytoplasmic morphologically selected sperm injection (IMSI). Gynécol Obstét Fertil 37:552–557

    Article  PubMed  Google Scholar 

  • Kao SH, Chao HT, Chen HW et al (2008) Increase of oxidative stress in human sperm with lower motility. Fertil Steril 89:1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Katayose H, Yanagida K, Hashimoto S et al (2003) Use of diamide-acridine orange fluorescence staining to detect aberrant protamination of human-ejaculated sperm nuclei. Fertil Steril 79:670–676

    Article  PubMed  Google Scholar 

  • Keefe DL, Liu L (2009) Telomeres and reproductive aging. Reprod Fertil Dev 21:10–14

    Article  PubMed  CAS  Google Scholar 

  • Khara KK, Vlad M, Griffiths M, Kennedy CR (1997) Human protamines and male infertility. J Assist Reprod Genet 14:282–290

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum AL, Tres LL (2004) The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol 67:271–284

    Article  PubMed  CAS  Google Scholar 

  • Kimmins S, Sassone-Corsi P (2005) Chromatin remodelling and epigenetic features of germ cells. Nature 434:583–589

    Article  PubMed  CAS  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Larson K, Sharma RK et al (2001) DNA damage in patients with untreated cancer as measured by the sperm chromatin structure assay. Fertil Steril 75:469–475

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Sato A, Otsu E et al (2007) Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 16:2542–2551

    Article  PubMed  CAS  Google Scholar 

  • Kriegel TM, Heidenreich F, Kettner K et al (2009) Identification of diabetes- and obesity-associated proteomic changes in human spermatozoa by difference gel electrophoresis. Reprod Biomed Online 19:660–670

    Article  PubMed  CAS  Google Scholar 

  • Kühnert B, Nieschlag E (2004) Reproductive functions of the ageing male. Hum Reprod Update 10:327–339

    Article  PubMed  Google Scholar 

  • Kurtev V, Margueron R, Kroboth K (2004) Transcriptional regulation by the repressor of estrogen receptor activity via recruitment of histone deacetylases. J Biol Chem 279:24834–24843

    Article  PubMed  CAS  Google Scholar 

  • Lanzafame FM, La Vignera S, Vicari E, Calogero AE (2009) Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed Online 19:638–659

    Article  PubMed  CAS  Google Scholar 

  • Larson KL, Brannian JD, Timm BK et al (1999) Density gradient centrifugation and glass wool filtration of semen remove spermatozoa with damaged chromatin structure. Hum Reprod 14:2015–2019

    Article  PubMed  CAS  Google Scholar 

  • Larson KL, DeJonge CJ, Barnes AM et al (2000) Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod 15:1717–1722

    Article  PubMed  CAS  Google Scholar 

  • Larson-Cook KL, Brannian JD, Hansen KA et al (2003) Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril 80:895–902

    Article  PubMed  Google Scholar 

  • Le Lannou D, Colleu D, Boujard D et al (1986) Effect of duration of abstinence on maturity of human spermatozoa nucleus. Arch Androl 17:35–38

    Article  PubMed  Google Scholar 

  • Leduc F, Nkoma GB, Boissonneault G (2008) Spermiogenesis and DNA repair: a possible etiology of human infertility and genetic disorders. Syst Biol Reprod Med 54:3–10

    Article  PubMed  CAS  Google Scholar 

  • Lefièvre L, Chen Y, Conner SJ et al (2007) Human spermatozoa contain multiple targets for protein S-nitrosylation: an alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics 7:3066–3084

    Article  PubMed  CAS  Google Scholar 

  • Lescoat D, Colleu D, Boujard D, Le Lannou D (1988) Electrophoretic characteristics of nuclear proteins from human spermatozoa. Arch Androl 20:35–40

    Article  PubMed  CAS  Google Scholar 

  • Lewis SE, Agbaje IM (2008) Using the alkaline comet assay in prognostic tests for male infertility and assisted reproductive technology outcomes. Mutagenesis 23:163–170

    Article  PubMed  CAS  Google Scholar 

  • Lewis SE, Sterling ES, Young IS, Thompson W (1997) Comparison of individual antioxidants of sperm and seminal plasma in fertile and infertile men. Fertil Steril 67:142–147

    Article  PubMed  CAS  Google Scholar 

  • Lewis JD, Song Y, de Jong ME et al (2003) A walk though vertebrate and invertebrate protamines. Chromosoma 111:473–482

    Article  PubMed  Google Scholar 

  • Li K, Shang X, Chen Y (2004) High-performance liquid chromatographic detection of lipid peroxidation in human seminal plasma and its application to male infertility. Clin Chim Acta 346:199–203

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Lalancette C, Miller D, Krawetz SA (2008) Characterization of nucleohistone and nucleoprotamine components in the mature human sperm nucleus. Asian J Androl 10:535–541

    Article  PubMed  CAS  Google Scholar 

  • Liao TT, Xiang Z, Zhu WB, Fan LQ (2009) Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry. Asian J Androl 11:683–693

    Article  PubMed  CAS  Google Scholar 

  • Lin MH, Kuo-Kuang Lee R, Li SH et al (2008) Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil Steril 90:352–359

    Article  PubMed  Google Scholar 

  • Loft S, Kold-Jensen T, Hjollund NH et al (2003) Oxidative DNA damage in human sperm influences time to pregnancy. Hum Reprod 18:1265–1272

    Article  PubMed  CAS  Google Scholar 

  • Lolis D, Georgiou I, Syrrou M et al (1996) Chromomycin A3-staining as an indicator of protamine deficiency and fertilization. Int J Androl 19:23–27

    Article  PubMed  CAS  Google Scholar 

  • Lopes S, Sun JG, Jurisicova A et al (1998) Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril 69:528–532

    Article  PubMed  CAS  Google Scholar 

  • Lopes FL, Fortier AL, Darricarrère N et al (2009) Reproductive and epigenetic outcomes associated with aging mouse oocytes. Hum Mol Genet 18:2032–2044

    Article  PubMed  CAS  Google Scholar 

  • Love CC, Kenney RM (1999) Scrotal heat stress induces altered sperm chromatin structure associated with a decrease in protamine disulfide bonding in the stallion. Biol Reprod 60:615–620

    Article  PubMed  CAS  Google Scholar 

  • Manicardi GC, Bianchi PG, Pantano S et al (1995) Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod 52:864–867

    Article  PubMed  CAS  Google Scholar 

  • Manipalviratn S, DeCherney A, Segars J (2009) Imprinting disorders and assisted reproductive technology. Fertil Steril 91:305–315

    Article  PubMed  CAS  Google Scholar 

  • Marques CJ, Carvalho F, Sousa M, Barros A (2004) Genomic imprinting in disruptive spermatogenesis. Lancet 363:1700–1702

    Article  PubMed  CAS  Google Scholar 

  • Marques CJ, Costa P, Vaz B et al (2008) Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod 14:67–74

    Article  PubMed  CAS  Google Scholar 

  • Martin RH (2005) Mechanisms of nondisjunction in human spermatogenesis. Cytogenet Genome Res 111:245–249

    Article  PubMed  CAS  Google Scholar 

  • Martin RH (2008) Meiotic errors in human oogenesis and spermatogenesis. Reprod Biomed Online 16:523–531

    Article  PubMed  Google Scholar 

  • Martinage A, Arkhis A, Alimi E et al (1990) Molecular characterization of nuclear basic protein HPI1, a putative precursor of human sperm protamines HP2 and HP3. Eur J Biochem 191:449–451

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Heredia J, Estanyol JM, Ballesca JL, Oliva R (2006) Proteomic identification of human sperm proteins. Proteomics 6:4356–4369

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Heredia J, de Mateo S, Vidal-Taboada JM et al (2008) Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod 23:783–791

    Article  PubMed  CAS  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    Article  PubMed  CAS  Google Scholar 

  • McKay DJ, Renaux BS, Dixon GH (1986) Human sperm protamines. Amino-acid sequences of two forms of protamine P2. Eur J Biochem 156:5–8

    Article  PubMed  CAS  Google Scholar 

  • McKusick VA (2007) Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet 80:588–604

    Article  PubMed  CAS  Google Scholar 

  • Mengual L, Ballescá JL, Ascaso C, Oliva R (2003) Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls. J Androl 24:438–447

    PubMed  Google Scholar 

  • Mezquita C (1985) Chromatin composition, structure and function in spermatogenesis. Revis Biol Celular 5:1–124

    Google Scholar 

  • Miciński P, Pawlicki K, Wielgus E et al (2009) The sperm chromatin structure assay (SCSA) as prognostic factor in IVF/ICSI program. Reprod Biol 9:65–70

    Article  PubMed  Google Scholar 

  • Milingos S, Comhaire FH, Liapi A, Aravantinos D (1996) The value of semen characteristics and tests of sperm function in selecting couples for intra-uterine insemination. Eur J Obstet Gynecol Reprod Biol 64:115–118

    Article  PubMed  CAS  Google Scholar 

  • Mitchell V, Steger K, Marchetti C et al (2005) Cellular expression of protamine 1 and 2 transcripts in testicular spermatids from azoospermic men submitted to TESE-ICSI. Mol Hum Reprod 11:373–379

    Article  PubMed  CAS  Google Scholar 

  • Moll AC, Imhof SM, Cruysberg JR, Schouten-van Meeteren AY, Boers M, van Leeuwen FE (2003) Incidence of retinoblastoma in children born after in-vitro fertilization. Lancet 361:309–310

    Article  PubMed  Google Scholar 

  • Morrell JM, Moffatt O, Sakkas D et al (2004) Reduced senescence and retained nuclear DNA integrity in human spermatozoa prepared by density gradient centrifugation. J Assist Reprod Genet 21:217–222

    Article  PubMed  CAS  Google Scholar 

  • Morris ID, Ilott S, Dixon L, Brison DR (2002) The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (comet assay) and its relationship to fertilization and embryo development. Hum Reprod 17:990–998

    Article  PubMed  CAS  Google Scholar 

  • Moskovtsev SI, Lecker I, Mullen JB et al (2009) Cause-specific treatment in patients with high sperm DNA damage resulted in significant DNA improvement. Syst Biol Reprod Med 55:109–115

    Article  PubMed  CAS  Google Scholar 

  • Mudrak O, Tomilin N, Zalensky A (2005) Chromosome architecture in the decondensing human sperm nucleus. J Cell Sci 118:4541–4550

    Article  PubMed  CAS  Google Scholar 

  • Muratori M, Tamburrino L, Tocci V et al (2009) Small variations in crucial steps of tunel assay coupled to flow cytometry greatly affect measures of sperm DNA fragmentation. J Androl. doi:10.2164/jandrol.109.008508

    PubMed  Google Scholar 

  • Muriel L, Garrido N, Fernández JL et al (2006a) Value of the sperm deoxyribonucleic acid fragmentation level, as measured by the sperm chromatin dispersion test, in the outcome of in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril 85:371–383

    Article  PubMed  CAS  Google Scholar 

  • Muriel L, Meseguer M, Fernández JL et al (2006b) Value of the sperm chromatin dispersion test in predicting pregnancy outcome in intrauterine insemination: a blind prospective study. Hum Reprod 21:738–744

    Article  PubMed  Google Scholar 

  • Nakamura H, Kimura T, Nakajima A et al (2002) Detection of oxidative stress in seminal plasma and fractionated sperm from subfertile male patients. Eur J Obstet Gynecol Reprod Biol 105:155–160

    Article  PubMed  CAS  Google Scholar 

  • Nani JM, Jeyendran RS (2001) Sperm processing: glass wool column filtration. Arch Androl 47:15–21

    Article  PubMed  CAS  Google Scholar 

  • Nasr-Esfahani MH, Razavi S, Mardani M (2001) Relation between different human sperm nuclear maturity tests and in vitro fertilization. J Assist Reprod Genet 18:219–225

    Article  PubMed  CAS  Google Scholar 

  • Nasr-Esfahani MH, Razavi S, Mozdarani H et al (2004a) Relationship between protamine deficiency with fertilization rate and incidence of sperm premature chromosomal condensation post-ICSI. Andrologia 36:95–100

    Article  PubMed  CAS  Google Scholar 

  • Nasr-Esfahani MH, Salehi M, Razavi S et al (2004b) Effect of protamine-2 deficiency on ICSI outcome. Reprod Biomed Online 9:652–658

    Article  PubMed  CAS  Google Scholar 

  • Nasr-Esfahani MH, Salehi M, Razavi S et al (2005) Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod Biomed Online 11:198–205

    Article  PubMed  CAS  Google Scholar 

  • Nasr-Esfahani MH, Razavi S, Vahdati AA et al (2008a) Evaluation of sperm selection procedure based on hyaluronic acid binding ability on ICSI outcome. J Assist Reprod Genet 25:197–203

    Article  PubMed  CAS  Google Scholar 

  • Nasr-Esfahani MH, Razavi S, Tavalaee M (2008b) Failed fertilization after ICSI and spermiogenic defects. Fertil Steril 89:892–898

    Article  PubMed  Google Scholar 

  • Nei M (1969) Gene duplication and nucleotide substitution in evolution. Nature 221:40–42

    Article  PubMed  CAS  Google Scholar 

  • O’Connell M, McClure N, Powell LA et al (2003) Differences in mitochondrial and nuclear DNA status of high-density and low-density sperm fractions after density centrifugation preparation. Fertil Steril 79:754–762

    Article  PubMed  Google Scholar 

  • O’Flaherty C, Vaisheva F, Hales BF et al (2008) Characterization of sperm chromatin quality in testicular cancer and Hodgkin’s lymphoma patients prior to chemotherapy. Hum Reprod 23:1044–1052

    Article  PubMed  CAS  Google Scholar 

  • O’Flaherty C, Hales BF, Chan P, Robaire B (2009) Impact of chemotherapeutics and advanced testicular cancer or Hodgkin lymphoma on sperm deoxyribonucleic acid integrity. Fertil Steril. doi:10.1016/j.fertnstert.2009.05.068

    PubMed  Google Scholar 

  • Oliva R (2006) Protamines and male infertility. Hum Reprod Update 12:417–435

    Article  PubMed  CAS  Google Scholar 

  • Oliva R, Dixon GH (1991) Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog Nucleic Acid Res Mol Biol 40:25–94

    Article  PubMed  CAS  Google Scholar 

  • Oliva R, Martínez-Heredia J, Estanyol JM (2008) Proteomics in the study of the sperm cell composition, differentiation and function. Syst Biol Reprod Med 54:23–36

    Article  PubMed  CAS  Google Scholar 

  • Oliva R, de Mateo S, Estanyol JM (2009) Sperm cell proteomics. Proteomics 9:1004–1017

    Article  PubMed  CAS  Google Scholar 

  • Ostermeier GC, Miller D, Huntriss JD et al (2004) Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429:154

    Article  PubMed  CAS  Google Scholar 

  • Ozmen B, Caglar GS, Koster F et al (2007) Relationship between sperm DNA damage, induced acrosome reaction and viability in ICSI patients. Reprod Biomed Online 15:208–214

    Article  PubMed  CAS  Google Scholar 

  • Paasch U, Grunewald S, Glander HJ (2007) Sperm selection in assisted reproductive techniques. Soc Reprod Fertil Suppl 65:515–525

    PubMed  Google Scholar 

  • Parmegiani L, Cognigni GE, Ciampaglia W et al (2010) Efficiency of hyaluronic acid (HA) sperm selection. J Assist Reprod Genet 27:13–16

    Article  PubMed  Google Scholar 

  • Payne JF, Raburn DJ, Couchman GM et al (2005) Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques. Fertil Steril 84:356–364

    Article  PubMed  Google Scholar 

  • Peddinti D, Nanduri B, Kaya A et al (2008) Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst Biol 2:19

    Article  PubMed  CAS  Google Scholar 

  • Poccia D (1986) Remodeling of nucleoproteins during gametogenesis, fertilization, and early development. Int Rev Cytol 105:1–65

    Article  PubMed  CAS  Google Scholar 

  • Potts RJ, Newbury CJ, Smith G et al (1999) Sperm chromatin damage associated with male smoking. Mutat Res 423:103–111

    Article  PubMed  CAS  Google Scholar 

  • Ramos L, van der Heijden GW, Derijck A et al (2008) Incomplete nuclear transformation of human spermatozoa in oligo-astheno-teratospermia: characterization by indirect immunofluorescence of chromatin and thiol status. Hum Reprod 23:259–270

    Article  PubMed  CAS  Google Scholar 

  • Rattray AJ, Strathern JN (2003) Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu Rev Genet 37:31–66

    Article  PubMed  CAS  Google Scholar 

  • Rawe VY, Diaz ES, Abdelmassih R et al (2008) The role of sperm proteasomes during sperm aster formation and early zygote development: implications for fertilization failure in humans. Hum Reprod 23:573–580

    Article  PubMed  CAS  Google Scholar 

  • Razavi S, Nasr-Esfahani MH, Mardani M et al (2003) Effect of human sperm chromatin anomalies on fertilization outcome post-ICSI. Andrologia 35:238–243

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Rousseau F, Bonaventure J, Legeai-Mallet L et al (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371:252–254

    Article  PubMed  CAS  Google Scholar 

  • Rousseaux S, Caron C, Govin J et al (2005) Establishment of male-specific epigenetic information. Gene 345:139–153

    Article  PubMed  CAS  Google Scholar 

  • Rousseaux S, Reynoird N, Escoffier E et al (2008) Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod Biomed Online 16:492–503

    Article  PubMed  CAS  Google Scholar 

  • Royere D, Hamamah S, Nicolle JC et al (1988) Freezing and thawing alter chromatin stability of ejaculated human spermatozoa: fluorescence acridine orange staining and Feulgen-DNA cytophotometric studies. Gamete Res 21:51–57

    Article  PubMed  CAS  Google Scholar 

  • Rubes J, Selevan SG, Evenson DP et al (2005) Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod 20:2776–2783

    Article  PubMed  CAS  Google Scholar 

  • Rubio C, Buendía P, Rodrigo L et al (2009) Prognostic factors for preimplantation genetic screening in repeated pregnancy loss. Reprod Biomed Online 18:687–693

    Article  PubMed  Google Scholar 

  • Rufas O, Fisch B, Seligman J et al (1991) Thiol status in human sperm. Mol Reprod Dev 29:282–288

    Article  PubMed  CAS  Google Scholar 

  • Said TM, Agarwal A, Sharma RK et al (2005) Impact of sperm morphology on DNA damage caused by oxidative stress induced by beta-nicotinamide adenine dinucleotide phosphate. Fertil Steril 83:95–103

    Article  PubMed  CAS  Google Scholar 

  • Said T, Agarwal A, Grunewald S et al (2006) Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: an in vitro model. Biol Reprod 74:530–537

    Article  PubMed  CAS  Google Scholar 

  • Said TM, Agarwal A, Zborowski M et al (2008) Utility of magnetic cell separation as a molecular sperm preparation technique. J Androl 29:134–142

    Article  PubMed  Google Scholar 

  • Sakkas D, Urner F, Bianchi PG et al (1996) Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum Reprod 11:837–843

    Article  PubMed  CAS  Google Scholar 

  • Sakkas D, Manicardi GC, Tomlinson M et al (2000) The use of two density gradient centrifugation techniques and the swim-up method to separate spermatozoa with chromatin and nuclear DNA anomalies. Hum Reprod 15:1112–1116

    Article  PubMed  CAS  Google Scholar 

  • Saowaros W, Panyim S (1979) The formation of disulfide bonds in human protamines during sperm maturation. Experientia 35:191–192

    Article  PubMed  CAS  Google Scholar 

  • Sarrate Z, Blanco J, Anton E et al (2005) FISH studies of chromosome abnormalities in germ cells and its relevance in reproductive counseling. Asian J Androl 7:227–236

    Article  PubMed  CAS  Google Scholar 

  • Sautière P, Martinage A, Bélaiche D et al (1988) Comparison of the amino acid sequences of human protamines HP2 and HP3 and of intermediate basic nuclear proteins HPS1 and HPS2. Structural evidence that HPS1 and HPS2 are pro-protamines. J Biol Chem 263:11059–11062

    PubMed  Google Scholar 

  • Schmid TE, Eskenazi B, Baumgartner A et al (2007) The effects of male age on sperm DNA damage in healthy non-smokers. Hum Reprod 221:180–187

    Google Scholar 

  • Seli E, Sakkas D (2005) Spermatozoal nuclear determinants of reproductive outcome: implications for ART. Hum Reprod Update 11:337–349

    Article  PubMed  CAS  Google Scholar 

  • Seli E, Gardner DK, Schoolcraft WB et al (2004) Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril 82:378–383

    Article  PubMed  Google Scholar 

  • Shaman JA, Yamauchi Y, Ward WS (2007) Function of the sperm nuclear matrix. Arch Androl 53:135–140

    Article  PubMed  CAS  Google Scholar 

  • Shirley CR, Hayashi S, Mounsey S et al (2004) Abnormalities and reduced reproductive potential of sperm from Tnp1- and Tnp2-null double mutant mice. Biol Reprod 71:1220–1229

    Article  PubMed  CAS  Google Scholar 

  • Sigman M, Baazeem A, Zini A (2009) Semen analysis and sperm function assays: what do they mean? Semin Reprod Med 27:115–123

    Article  PubMed  Google Scholar 

  • Silvestroni L, Frajese G, Fabrizio M (1976) Histones instead of protamines in terminal germ cells of infertile, oligospermic men. Fertil Steril 27:1428–1437

    PubMed  CAS  Google Scholar 

  • Singh NP, Danner DB, Tice RR et al (1989) Abundant alkali-sensitive sites in DNA of human and mouse sperm. Exp Cell Res 184:461–470

    Article  PubMed  CAS  Google Scholar 

  • Singh NP, Muller CH, Berger RE (2003) Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril 80:1420–1430

    Article  PubMed  Google Scholar 

  • Singleton S, Zalensky A, Doncel GF et al (2007) Testis/sperm-specific histone 2B in the sperm of donors and subfertile patients: variability and relation to chromatin packaging. Hum Reprod 22:743–750

    Article  PubMed  CAS  Google Scholar 

  • Skakkebaek NE, Jørgensen N, Main KM (2006) Is human fecundity declining? Int J Androl 29:2–11

    Article  PubMed  Google Scholar 

  • Smith R, Kaune H, Parodi D et al (2006) Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod 21:986–993

    Article  PubMed  CAS  Google Scholar 

  • Soares SR, Melo MA (2008) Cigarette smoking and reproductive function. Curr Opin Obstet Gynecol 20:281–291

    Article  PubMed  Google Scholar 

  • Sonne SB, Kristensen DM, Novotny GW et al (2008) Testicular dysgenesis syndrome and the origin of carcinoma in situ testis. Int J Androl 31:275–287

    Article  PubMed  Google Scholar 

  • Sotolongo B, Lino E, Ward WS (2003) Ability of hamster spermatozoa to digest their own DNA. Biol Reprod 69:2029–2035

    Article  PubMed  CAS  Google Scholar 

  • Spano M, Kolstad AH, Larsen SB et al (1998) The applicability of the flow cytometric sperm chromatin structure assay in epidemiological studies. Hum Reprod 13:2495–2505

    Article  PubMed  CAS  Google Scholar 

  • Steger K, Fink L, Failing K et al (2003) Decreased protamine-1 transcript levels in testes from infertile men. Mol Hum Reprod 9:331–336

    Article  PubMed  CAS  Google Scholar 

  • Suganuma R, Yanagimachi R, Meistrich ML (2005) Decline in fertility of mouse sperm with abnormal chromatin during epididymal passage as revealed by ICSI. Hum Reprod 20:3101–3108

    Article  PubMed  CAS  Google Scholar 

  • Sukcharoen N (1995) The effect of discontinuous Percoll gradient centrifugation on sperm morphology and nuclear DNA normality. J Med Assoc Thai 78:22–29

    PubMed  CAS  Google Scholar 

  • Sun JG, Jurisicova A, Casper RF (1997) Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod 56:602–607

    Article  PubMed  CAS  Google Scholar 

  • Szczygiel MA, Ward WS (2002) Combination of dithiothreitol and detergent treatment of spermatozoa causes paternal chromosomal damage. Biol Reprod 67:1532–1537

    Article  PubMed  CAS  Google Scholar 

  • Tarozzi N, Nadalini M, Stronati A et al (2009) Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod Biomed Online 18:486–495

    Article  PubMed  Google Scholar 

  • Tatsuta T, Model K, Langer T (2005) Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol Biol Cell 16:248–259

    Article  PubMed  CAS  Google Scholar 

  • Tavalaee M, Razavi S, Nasr-Esfahani MH (2009) Influence of sperm chromatin anomalies on assisted reproductive technology outcome. Fertil Steril 91:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Tesarik J, Greco E, Mendoza C (2004) Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod 19:611–615

    Article  PubMed  CAS  Google Scholar 

  • Thompson WE, Ramalho-Santos J, Sutovsky P (2003) Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control. Biol Reprod 69:254–260

    Article  PubMed  CAS  Google Scholar 

  • Thompson-Cree ME, McClure N, Donnelly ET et al (2003) Effects of cryopreservation on testicular sperm nuclear DNA fragmentation and its relationship with assisted conception outcome following ICSI with testicular spermatozoa. Reprod Biomed Online 7:449–455

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson MJ, Moffatt O, Manicardi GC et al (2001) Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. Hum Reprod 16:2160–2165

    Article  PubMed  CAS  Google Scholar 

  • Tomsu M, Sharma V, Miller D (2002) Embryo quality and IVF treatment outcomes may correlate with different sperm comet assay parameters. Hum Reprod 17:1856–1862

    Article  PubMed  CAS  Google Scholar 

  • Torregrosa N, Domínguez-Fandos D, Camejo MI et al (2006) Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Hum Reprod 21:2084–2089

    Article  PubMed  CAS  Google Scholar 

  • Trasler JM (2009) Epigenetics in spermatogenesis. Mol Cell Endocrinol 306:33–36

    Article  PubMed  CAS  Google Scholar 

  • Tremellen K (2008) Oxidative stress and male infertility–a clinical perspective. Hum Reprod Update 14:243–258

    Article  PubMed  CAS  Google Scholar 

  • Tremellen K, Miari G, Froiland D, Thompson J (2007) A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment. Aust N Z J Obstet Gynaecol 47:216–221

    Article  PubMed  Google Scholar 

  • Tunc O, Tremellen K (2009) Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J Assist Reprod Genet 26:537–544

    Article  PubMed  Google Scholar 

  • Tunc O, Thompson J, Tremellen K (2009) Improvement in sperm DNA quality using an oral antioxidant therapy. Reprod Biomed Online 18:761–768

    Article  PubMed  CAS  Google Scholar 

  • Ubaldi F, Rienzi L (2008) Morphological selection of gametes. Placenta 29:115–120

    Article  PubMed  Google Scholar 

  • Van den Bergh M, Revelard P, Bertrand E et al (1997) Glass wool column filtration, an advantageous way of preparing semen samples for intracytoplasmic sperm injection: an auto-controlled randomized study. Hum Reprod 12:509–513

    Article  PubMed  Google Scholar 

  • van der Heijden GW, Ramos L, Baart EB et al (2008) Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev Biol 8:34

    Article  PubMed  CAS  Google Scholar 

  • Velez de la Calle JF, Muller A, Walschaerts M et al (2008) Sperm deoxyribonucleic acid fragmentation as assessed by the sperm chromatin dispersion test in assisted reproductive technology programs: results of a large prospective multicenter study. Fertil Steril 90(2):1792–1799

    Article  PubMed  Google Scholar 

  • Verona RI, Mann MR, Bartolomei MS (2003) Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu Rev Cell Dev Biol 19:237–259

    Article  PubMed  CAS  Google Scholar 

  • Vilfan ID, Conwell CC, Hud NV (2004) Formation of native-like mammalian sperm cell chromatin with folded bull protamine. J Biol Chem 279:20088–20095

    Article  PubMed  CAS  Google Scholar 

  • Virant-Klun I, Tomazevic T, Meden-Vrtovec H (2002) Sperm single-stranded DNA, detected by acridine orange staining, reduces fertilization and quality of ICSI-derived embryos. J Assist Reprod Genet 19:319–328

    Article  PubMed  Google Scholar 

  • Virro MR, Larson-Cook KL, Evenson DP (2004) Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 81:1289–1295

    Article  PubMed  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  PubMed  CAS  Google Scholar 

  • Wong A, Chuan SS, Patton WC et al (2008) Addition of eosin to the aniline blue assay to enhance detection of immature sperm histones. Fertil Steril 90:1999–2002

    Article  PubMed  Google Scholar 

  • Wu TF, Chu DS (2008) Sperm chromatin: fertile grounds for proteomic discovery of clinical tools. Mol Cell Proteomics 7:1876–1886

    Article  PubMed  CAS  Google Scholar 

  • Wykes SM, Krawetz SA (2003) The structural organization of sperm chromatin. J Biol Chem 278:29471–29477

    Article  PubMed  CAS  Google Scholar 

  • Wyrobek AJ, Eskenazi B, Young S (2006) Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci USA 103:9601–9606

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi Y, Shaman JA, Ward WS (2007) Topoisomerase II-mediated breaks in spermatozoa cause the specific degradation of paternal DNA in fertilized oocytes. Biol Reprod 76:666–672

    Article  PubMed  CAS  Google Scholar 

  • Yelick PC, Balhorn R, Johnson PA et al (1987) Mouse protamine 2 is synthesized as a precursor whereas mouse protamine 1 is not. Mol Cell Biol 7:2173–2179

    PubMed  CAS  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  PubMed  CAS  Google Scholar 

  • Yoon SR, Qin J, Glaser RL et al (2009) The ups and downs of mutation frequencies during aging can account for the apert syndrome paternal age effect. PLoS Genet 5:e1000558

    Article  PubMed  CAS  Google Scholar 

  • Yoshii T, Kuji N, Komatsu S et al (2005) Fine resolution of human sperm nucleoproteins by two-dimensional electrophoresis. Mol Hum Reprod 11:677–681

    Article  PubMed  CAS  Google Scholar 

  • Young KE, Robbins WA, Xun L et al (2003) Evaluation of chromosome breakage and DNA integrity in sperm: an investigation of remote semen collection conditions. J Androl 24:853–861

    PubMed  CAS  Google Scholar 

  • Zalenskaya IA, Zalensky AO (2002) Telomeres in mammalian male germline cells. Int Rev Cytol 218:37–67

    Article  PubMed  CAS  Google Scholar 

  • Zalenskaya IA, Bradbury EM, Zalensky AO (2000) Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Commun 279:213–218

    Article  PubMed  CAS  Google Scholar 

  • Zalensky AO, Allen MJ, Kobayashi A et al (1995) Well-defined genome architecture in the human sperm nucleus. Chromosoma 103:577–590

    Article  PubMed  CAS  Google Scholar 

  • Zalensky AO, Siino JS, Gineitis AA et al (2002) Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. J Biol Chem 277:43474–43480

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Huo R, Wang FQ et al (2007) Identification of several proteins involved in regulation of sperm motility by proteomic analysis. Fertil Steril 87:436–438

    Article  PubMed  CAS  Google Scholar 

  • Zini A, Sigman M (2009) Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl 30:219–229

    Article  PubMed  CAS  Google Scholar 

  • Zini A, Kamal KM, Phang D (2001a) Free thiols in human spermatozoa: correlation with sperm DNA integrity. Urology 58:80–84

    Article  PubMed  CAS  Google Scholar 

  • Zini A, Bielecki R, Phang D, Zenzes MT (2001b) Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril 75:674–687

    Article  PubMed  CAS  Google Scholar 

  • Zini A, Meriano J, Kader K et al (2005a) Potential adverse effect of sperm DNA damage on embryo quality after ICSI. Hum Reprod 20:3476–3480

    Article  PubMed  CAS  Google Scholar 

  • Zini A, Blumenfeld A, Libman J, Willis J (2005b) Beneficial effect of microsurgical varicocelectomy on human sperm DNA integrity. Hum Reprod 20:1018–1021

    Article  PubMed  CAS  Google Scholar 

  • Zini A, Boman JM, Belzile E, Ciampi A (2008) Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod 23:2663–2668

    Article  PubMed  CAS  Google Scholar 

  • Zini A, San Gabriel M, Baazeem A (2009) Antioxidants and sperm DNA damage: a clinical perspective. J Assist Reprod Genet 26:427–432

    Article  PubMed  Google Scholar 

  • Zubkova EV, Wade M, Robaire B (2005) Changes in spermatozoal chromatin packaging and susceptibility to oxidative challenge during aging. Fertil Steril 84:1191–1198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by a grant from the Ministerio de Ciencia y Tecnología BFU2009-07118, fondos FEDER to R.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Oliva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Oliva, R., de Mateo, S. (2011). Medical Implications of Sperm Nuclear Quality. In: Rousseaux, S., Khochbin, S. (eds) Epigenetics and Human Reproduction. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14773-9_3

Download citation

Publish with us

Policies and ethics