Skip to main content

Economics of Bioenergy Crops for Electricity Generation: Implications for Land Use and Greenhouse Gases

  • Conference paper
  • First Online:
Dynamics, Games and Science II

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 2))

  • 1445 Accesses

Abstract

This paper develops a dynamic linear optimization framework to examine the optimal land allocation for two perennial crops, switchgrass and miscanthus, that can be co-fired with coal for electricity generation. Detailed spatial data at county level is used to determine the heterogeneous costs of producing and delivering biomass to power plants in Illinois over a 15-year period. A transportation module is incorporated in the model to link power plants to perennial crop growing areas such that power plants obtain their biomass input from the cheapest sources. A supply curve for bioenergy is thereby generated and the implications of various levels of production for farm income, subsidy payments and for the environment are analyzed. The environmental benefit in the form of reduced carbon-dioxide emissions from co-firing biomass with coal are determined by conducting a lifecycle analysis of carbon-dioxide emissions from electricity generated by co-firing bioenergy crops as compared to that generated from coal only. The lifecycle analysis includes the soil carbon sequestered by perennial grasses and the carbon emissions displaced by these grasses due to both conversion of land from row crops and co-firing the grasses with coal. Spatial variability in land use and in soil carbon sequestration potential of land use choices, and their policy implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, J.D., Darmody, R.G..: Extent and Organic Matter Content of Soils in Illinois Soil Associations and Counties. University of Illinois at Urbana-Champaign (1991)

    Google Scholar 

  2. Beuch, S., Boelcke, B., Belau, L.: Effect of Organic Residues of Miscanthus X Giganteus on the Soil Organic Matter Level of Arable Soils. J. Agron. Crop Sci. 183, 111–119 (2000)

    Article  Google Scholar 

  3. Bowman, R.A., Peterson, M.: Soil Organic Matter Levels in the Central Great Plains. USDA-ARS and NRCS (1997)

    Google Scholar 

  4. Chavas, J.-P., Holt, M.T.: Acreage Decisions under Risk: The Case of Corn and Soybeans. Am. J. Agric. Econ. 72(3), 529–538 (1990)

    Article  Google Scholar 

  5. Chavas, J.-P., Pope, R.D., Kao, R.S.: An Analysis of the Role of Future Prices, Cash Prices and Government Programs in Acreage Response. West. J. Agric. Econ. 8(1), 27–33 (1983)

    Google Scholar 

  6. Clifton-Brown, J.C., Stampfl, P.F., Jones, M.B.: Miscanthus Biomass Production for Energy in Europe and Its Potential Contribution to Decreasing Fossil Fuel Carbon Emissions. Glob. Chang. Biol. 10(4), 509–518 (2004)

    Article  Google Scholar 

  7. Dick, W.A., Belvins, R.L., Frye, W.W., Peters, S.E., Christenson, D.R., Pierce, F.J., Vitosh, M.L.: Impacts of Agricultural Management Practices on C Sequestration in Forest – Derived Soils of the Eastern Corn Belt. Soil Tillage Res. 47(3–4), 235–244 (1998)

    Article  Google Scholar 

  8. Downing, M., Graham, R.L.: The Potential Supply and Cost of Biomass from Energy Crops in the Tennessee Valley Authority Region. Biomass Bioenergy 11(4), 283–303 (1996)

    Article  Google Scholar 

  9. Duffy, M.D., Nanhou, V.Y.: Costs of Producing Switchgrass for Biomass in Iowa, PM 1866 Revised April Edition. Ames, Iowa State University, University Extension (2001)

    Google Scholar 

  10. Duffy, M.D., Nanhou, V.Y.: In: Janick, J., Whipkey, A. (eds.) Costs of Producing Switchgrass for Biomass in Southern Iowa, pp. 267–275. ASHS Press, Alexandria, VA (2002)

    Google Scholar 

  11. Elsayed, M.A., Matthews, R., Mortimer, N.D.: Carbon and Energy Balances for a Range of Biofuels Options. Energy Technology Support Unit (2003)

    Google Scholar 

  12. Epplin, F.M.: Cost to Produce and Deliver Switchgrass Biomass to an Ethanol Conversion Facility in the Southern Plains of the United States. Biomass and Bioenergy 11(6), 459–467 (1996)

    Article  Google Scholar 

  13. Eve, M.D., Sperow, M., Howerton, K., Paustian, K., Follett, R.F.: Predicted Impact of Management Changes on Soil Carbon Storage for Each Cropland Region of the Conterminous United States. J. Soil Water Conserv. 58, 196–204 (2002)

    Google Scholar 

  14. Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O’Hare, M., Kammen, D.M.: Ethanol Can Contribute to Energy and Environmental Goals. Science 311(27), 506–509 (2006)

    Article  Google Scholar 

  15. Flach, K.W., Barnwell, T.O., Crosson, P.: In: Paul, E.A., et al. (eds.) Impacts of Agriculture on Atmospheric Carbon Dioxide. CRC, Boca Raton, FL (1997)

    Google Scholar 

  16. Gardner, B.L.: Futures prices in supply analysis. Am. J. Agric. Econ. 58(1), 81–84 (1976)

    Article  Google Scholar 

  17. Gebhart, D.L., Johnson, H.B., Mayeux, H.S., Polley, H.W.: The Crop Increases Soil Organic Carbon. J. Soil Water Conserv. 49, 488–492 (1994)

    Google Scholar 

  18. Graham, R.L., English, B.C., Noon, C.E.: A Geographic Information System-Based Modeling System for Evaluating the Cost of Delivered Energy Crop Feedstock. Biomass and BioEnergy 18(4), 309–329 (2000)

    Article  Google Scholar 

  19. Hallam, A., Anderson, I.C., Buxton, D.R.: Comparative economic analysis of perennial, annual, and intercrops for biomass production. Biomass Bioenergy 21, 407–424 (2001)

    Article  Google Scholar 

  20. Heaton, E.A., Clifton-Brown, J., Voigt, T., Jones, M.B., Long, S.P.: Miscanthus for renewable energy generation: European union experience and projections for Illinois. Mitigation Adapt. Strateg. Glob. Change 9, 433–451 (2004)

    Article  Google Scholar 

  21. Heaton, E.A., Voigt, T.B., Long, S.P.: Miscanthus and Switchgrass Trials in Illinois. Urbana, Department of Plant Biology, University of Illinois at Urbana Champaign, pp. 1–37. (2006)

    Google Scholar 

  22. Hill, J., Nelson, E., Tillman, D., Polasky, S., Tiffany, D.: From the cover: environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA 103, 11206–11210 (2006)

    Article  Google Scholar 

  23. Hitzhusen, F.J., Abdallah, M.: Economics of electrical energy from crop residue combustion with high sulfure coal. Am. J. Agric. Econ. 62(3), 416–425 (1980)

    Article  Google Scholar 

  24. INRA: Mitigation of the Greenhouse Effect. Increasing Carbon Stocks in French Agricultural Soils. French Institute for Agricultural Research (INRA) (2002)

    Google Scholar 

  25. IPCC Climate Change 2001: In: Houghton, J.T., et al. (eds.) The Scientific Basis. Cambridge University Press, New York (2001)

    Google Scholar 

  26. Ismail, I., Blevins, R.L., Frye, W.W.: Long-term no-tillage effects on soil properties and continuous corn yields. Soil Sci. Soc. Am. J. 58, 193–198 (1994)

    Article  Google Scholar 

  27. Just, R.E., Rausser, G.C.: Commodity price forecasting with large-scale econometric models and the futures market. Am. J. Agric. Econ. 63(2), 197–208 (1981)

    Article  Google Scholar 

  28. Kahle, P., Beuch, S., Boelcke, B., Leinweber, P., Schulten, H.R.: Cropping of miscanthus in central Europe: biomass production and influence on nutrients and soil organic matter. Eur. J. Agron. 15, 171–184 (2001)

    Article  Google Scholar 

  29. Khanna, M., Dhungana, B., Clifton-Brown, J.: Costs of producing switchgrass and miscanthus for bioenergy in Illinois. Biomass Bioenergy 32(6), 482–493

    Google Scholar 

  30. Lewandowski, I., Clifton-Brown, J.C., Andersson, B., Basch, G., Christian, D.G., Jørgensen, U., Jones, M.B., Riche, A.B., Schwarz, K.U., Tayebi, K., Teixeira, F.: Environment and harvest time affects the combustion qualities of miscanthus genotypes. Agron. J. 95(5), 1274–1280 (2003)

    Article  Google Scholar 

  31. Liu, S., Liu, J., Loveland, T.R.: Spatial-temporal carbon sequestration under land use and land cover change. 12th International Conference on Geoinformatics – Geospatial Information Research: Bridging the Pacific and Atlantic (2004). 7–9 June 2004

    Google Scholar 

  32. Mann, L.K.: A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the central United States. Geoderma 36, 241–253 (1985)

    Article  Google Scholar 

  33. Matthews, R.B., Grogan, P.: Potential C sequestration rates under short-rotation coppiced willow and miscanthus biomass crops: a modeling study. Asp. Appl. Biol. 65, 303–312 (2001)

    Google Scholar 

  34. McCarl, B.A., Adams, D.M., Alig, R.J., Chmelik, J.T.: Competitiveness of biomass fueled electrical power plants. Ann. Oper. Res. 94(1), 37–55 (2000)

    Article  MATH  Google Scholar 

  35. McGowin, C.R., Wiltsee, G.A.: Strategic analysis of biomass and waste fuels for electric power generation. Biomass Bioenergy 10(2–3), 167–175 (1996)

    Article  Google Scholar 

  36. McLaughlin, S.B., Kszos, L.A.: Development of switchgrass (Panicum Virgatum) as a bio-energy feedstock in the United States. Biomass Bioenergy 28, 515–535 (2005a)

    Article  Google Scholar 

  37. McLaughlin, S.B., Kszos, L.A.: Development of switchgrass (Panicum Virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28, 515–535 (2005b)

    Article  Google Scholar 

  38. McLaughlin, S.B., Samson, R., Bransby, D.I., Weislogel, A.: Evaluating Physical, Chemical, and Energetic Properties of Perennial Grasses as Biofuels. 15–20 Sept 1996

    Google Scholar 

  39. McLaughlin, S.B., Ugarte, D.G., Garten, C.T., Lynd, L.R., Sanderson, M.A., Tolbert, V.R., Wolf, D.D.: High-value renewable energy from prairie grasses. Environ. Sci. Technol. 36, 2122–2129 (2002)

    Article  Google Scholar 

  40. McLaughlin, S.B., Walsh, M.E.: Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenergy 14(4), 317–324 (1998)

    Article  Google Scholar 

  41. Nienow, S., McNamara, K.T., Gillespie, A.R., Preckel, P.V.: A model for the economic evaluation of plantation biomass production for co-firing with coal in electricity production. Agric. Resour. Econ. Rev. 28(1), 106–118 (1999)

    Google Scholar 

  42. Paustian, K., Cole, C.V., Sauerbeck, D., Sampson, N.: CO2 mitigation by agriculture: an overview. Clim. Change 40, 135–162 (1998)

    Article  Google Scholar 

  43. Paustian, K., Collins, H.P., Paul, E.A.: In: Paul, E.A. et al. (eds.) Management Controls on Soil Carbon. CRC, Boca Raton, FL (1997)

    Google Scholar 

  44. Prueger, J.H., Hatfield, J.L., Parkin, T.B., Kustas, W.P., Kaspar, T.C.: Carbon dioxide dynamics during a growing season in midwestern cropping systems. Environ. Manag. 33(1), 330–343 (2004)

    Article  Google Scholar 

  45. Puget, P., Lal, R., Izaurralde, C., Post, M., Owens, L.: Stocks and distribution of total and corn-derived soil organic carbon in aggregate and primary particle fractions for different land use and soil management practices. Soil Sci. 170(4), 256–279 (2005)

    Article  Google Scholar 

  46. Qin, X., Mohan, T., El-Halwagi, M., Cornforth, G., McCarl, B.A.: Switchgrass as an alternate feestock for power generation: an integrated environmental, energy and economic life-cycle assessment. Clean Technol. Environ. Policy 8, 233–249 (2006)

    Article  Google Scholar 

  47. Robertson, G.P., Paul, E.A., Harwood, R.R.: Greenhouse gases in intensive agriculture: contribution of individual gases to the radiative forcing of the atmosphere. Science 289, 1922–1924 (2000)

    Article  Google Scholar 

  48. Shapouri, H., Duffield, J., McAloon, A., Wang, M.: The 2001 Net Energy Balance of Corn-Ethanol. Proceedings of the Conference on Agriculture as a Producer and Consumer of Energy. 24–25 June 2004

    Google Scholar 

  49. Schnitkey, G.: Estimated cost of crop production in Illinois. Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign (2003)

    Google Scholar 

  50. Sinnott, R.W.: Virtues of the Haversine. Sky Telescope 68(2), 159 (1984)

    MathSciNet  Google Scholar 

  51. Six, J., Conant, R.T., Paul, E.A., Paustian, K.: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241(2), 155–176 (2002)

    Article  Google Scholar 

  52. Tharakan, P.J., Volk, T.A., Lindsey, C.A., Abrahamson, L.P., White, E.H.: Evaluating the impact of three incentive programs on the economics of cofiring willow biomass with coal in New York state. Energy Policy 33, 333–347 (2005)

    Article  Google Scholar 

  53. Tillman, D.A.: Biomass co-firing: the technology, the experience, the combustion consequences. Biomass Bioenergy 19, 365–384 (2000)

    Article  Google Scholar 

  54. Tilman, D., Hill, J., Lehman, C.: Carbon-negative biofuels from low-input high diversity grassland biomass. Science 314, 1598–1600 (2006)

    Article  Google Scholar 

  55. Turhollow, A.: Costs of Producing Biomass from Riparian Buffer Strips. Prepared by the Oak Ridge National Laboratory for the U.S. Department of Energy, ORNL/TM-1999/146 (2000)

    Google Scholar 

  56. Turhollow, A.F., Perlack, R.D.: Emissions of C02 from energy crop production. Biomass Bioenergy 1(3), 129–135 (1991)

    Article  Google Scholar 

  57. Ugarte, D.G., Walsh, M., Shapouri, H., Slinsky, S.: The Economic Impacts of Bioenergy Crop Production on U.S. Agriculture. U.S. Department of Agriculture (2003)

    Google Scholar 

  58. Unger, P.W.: In: Lal, R. (ed.) Total Carbon, Aggregation, Bulk Density, and Penetration Resistance of Cropland and Grassland Soils. vol. Special Publication 57 Madison, WI, Soil Science Society of America, pp. 72–92 (2001)

    Google Scholar 

  59. Uri, N.D.: Conservation tillage and the use of energy and other inputs in us agriculture. Energy Econ. 20(4), 389–410 (1998)

    Article  Google Scholar 

  60. USDA/NASS: Agricultural Statistics Database. (2003)

    Google Scholar 

  61. USDOE: Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda, Doe/Sc-0095. U.S. Department of Energy, Office of Science, Washington, D.C. (2006)

    Google Scholar 

  62. USDOE/EIA: Annual Energy Outlook 2002. DOE/EIA-0383(2002), U.S. Department of Energy (2001)

    Google Scholar 

  63. USDOE/EIA: Emissions of Greenhouse Gases in the United States 2005. U.S. Department of Energy, Energy Information Administration (2006)

    Google Scholar 

  64. USDOE/EIA: State Electricity Profiles 2002. U.S Department of Energy, Energy Information Administration (2002)

    Google Scholar 

  65. Walsh, M., Ugarte, D.G., Shapouri, H., Slinsky, S.P.: Bioenergy crop production in the United States: potential quantities, land use changes, and economic impacts on the agricultural sector. Environ. Resour. Econ. 24(4), 313–333 (2003)

    Article  Google Scholar 

  66. Wander, M.M., Bidart-Bouzat, G., Aref, S.: Tillage impacts on depth distribution of total and particulate organic matter in three illinois soil. Soil Sci. Soc. Am. J. 62, 1740–1711 (1998)

    Article  Google Scholar 

  67. West, T.O., Marland, G.: A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agric. Ecosyst. Environ. 91, 217–232 (2002)

    Article  Google Scholar 

  68. West, T.O., Marland, G., King, A.W., Post, W.M., Jain, A.K., Andrasko, K.: Carbon management response curves: estimates of temporal soil carbon dynamics. Environ. Manag. 33(4), 507–518 (2004)

    Article  Google Scholar 

  69. Wu, J., Adams, R.M., Kling, C.L., Tanaka, K.: From microlevel decisions to landscape changes: an assessment of agricultural conservation policies. Am. J. Agric. Econ. 86(1), 26–41 (2004)

    Article  Google Scholar 

  70. Wu, J., Segerson, K.: The impact of policies and land characteristics on potential groundwater pollution in Wisconsin. Am. J. Agric. Econ. 77(4), 1033–1147 (1995)

    Article  Google Scholar 

  71. Young, C.E., Westcott, P.C.: How decoupled is U.S. agricultural support for major crops? Am. J. Agric. Econ. 82(3), 762–767 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Khanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khanna, M., Onal, H., Dhungana, B., Wander, M. (2011). Economics of Bioenergy Crops for Electricity Generation: Implications for Land Use and Greenhouse Gases. In: Peixoto, M., Pinto, A., Rand, D. (eds) Dynamics, Games and Science II. Springer Proceedings in Mathematics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14788-3_35

Download citation

Publish with us

Policies and ethics