Skip to main content

Hyperspectral Data Compression Model Using SPCA (Segmented Principal Component Analysis) and Classification of Rice Crop Varieties

  • Conference paper
Contemporary Computing (IC3 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 94))

Included in the following conference series:

Abstract

Hyperspectral Image Processing System (HIPS) is a good source of vegetation detection and identification. This work presents a spectral classification of rice crop using EO-1 Hyperion Hyperspectral image. In HIPS the traditional classification methods have major limitations due to high dimensionality. The Principal Component Analysis (PCA) is a well established data compression tool that can be applied on Hyperspectral data to reduce its dimensionality for feature extraction and classification. Now PCA has become a traditional tool of data compression in HIPS. This research proposes a new approach of data compression based on Segmented Principal Component Analysis (SPCA). The outcomes of our analysis led to a conclusion that the SAM classification of PCA NIR (671.02-925.41nm) discriminates RICE crop varieties RICE 1[Ratan (IET-1411)], RICE 2[CSR-10 (IET-10349/10694)], RICE 3[Haryana Basmati-1(IET-10367)], RICE 4[HKR-126] and RICE 5[CSR-13 (IET-10348)] better than traditional PCA VNIR − SWIR and PCA VIR , PCA SWIR − 1, PCA SWIR − 2, PCA SWIR − 3 segments. Results of this research work have shown that the overall classification accuracy of PCA5 in PCA NIR segment is achieved 80.24% with kappa coefficient 0.77, however RICE4 and RICE5 varieties are classified 100% and RICE1 (72.73%), RICE2 (85.71%) and RICE3 (91.67%) are classified more accurately than other classification results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Green, A.A., Berman, M., Switzer, P., Craig, M.D.: A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing 26(1), 65–74 (1988)

    Article  Google Scholar 

  2. Bruce, L.M., Koger, C.K., Li, J.: Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Transaction Geoscience and Remote Sensing 40(10), 2318–2338 (2002)

    Google Scholar 

  3. Acito, N., Gorsini, G., Diani, M.: An unsupervised algorithm for selection of selection of end members in Hyperspectral images. In: Proceeding 2002 IEEE Geoscience and Remote Sensing Symposium (IGARSS 2002), vol. 3, pp. 1673–1675 (2002)

    Google Scholar 

  4. Staenz, K.: Classification of a hyperspectral agricultural data set using band moments for reduction of the spectral dimensionality. Canadian Journal Remote Sensing 23(3), 248–257 (1996)

    Google Scholar 

  5. Laba, M., Tsai, F., Ogurcak, D., Smith, S., Richmond, M.E.: Field determination of optimal dates for the discrimination of invasive wetland plant species using derivative spectral analysis. Photogrammetric Engineering & Remote Sensing 71(5), 603–611 (2005)

    Google Scholar 

  6. EO-1 User Guide: USGS Earth Resources Observation System Data Centre, EDC (2003)

    Google Scholar 

  7. Devlin, R.M., Baker, A.V.: Photosynthesis. Van Nostrand Reinhold, New York (1971)

    Google Scholar 

  8. Woolley, J.T.: Reflectance and transmittance of light by leaves. Plant Physiol. 47, 656–662 (1971)

    Article  Google Scholar 

  9. Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T.L., Sampson, P.H.: Estimation of chlorophyll fluorescence under natural illumination from hyperspectral data. International Journal of Applied Observation and Geoinformation 3, 321–327 (2001)

    Article  Google Scholar 

  10. Tucker, C.J., Garrat, M.W.: Leaf optical system modelled as a stochastic process. Appl. Opt. 16, 635–642 (1977)

    Article  Google Scholar 

  11. Gupta, R.K., Vijayan, D.: New hyperspectral vegetation characterization parameters. Advance Space Research 28, 201–206 (2001)

    Article  Google Scholar 

  12. Jacquemound, S., Baret, F.: Prospect: A model of leaf optical properties spectra. Remote Sensing Environment 34(2), 75–92 (1990)

    Article  Google Scholar 

  13. Asner, G.P., Lobell, D.B.: A bio geophysical approach for automated SWIR unmixing of soils and vegetation. Remote Sensing and Environment 74, 99–112 (2000)

    Article  Google Scholar 

  14. Clark, R.N., Roush, T.L.: Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysics and Research 89, 6329–6340 (1984)

    Article  Google Scholar 

  15. Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G., Vergo, N.: High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysics and Research 95, 12653–12680 (1990)

    Article  Google Scholar 

  16. Clark, R.N., Swayze, G.A., Gallagher, A., Gorelick, N., Kruse, F.: Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiplespectral features from multiple materials. In: Proc. 3rd Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication, pp. 91–28, 2–3 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shwetank, Jain, K., Bhatia, K. (2010). Hyperspectral Data Compression Model Using SPCA (Segmented Principal Component Analysis) and Classification of Rice Crop Varieties. In: Ranka, S., et al. Contemporary Computing. IC3 2010. Communications in Computer and Information Science, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14834-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14834-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14833-0

  • Online ISBN: 978-3-642-14834-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics