Skip to main content

Abstract

The genus Cuphea (Lyhtracea) is a New World genus, with about 600 species of herbaceous, perennial, and small shrubs native to North, Central, and South America. Many of Cuphea species have the ability to synthesize and store medium chain fatty acids (MCFAs) in their seeds. These MCFAs, such as capric, lauric, and myristic acids have several medicinal and nutritional uses. Modern studies in Cuphea systematics rely upon many kinds of comparative data such as cytology, cytogenetics, metabolites and molecular studies, which are important sources of information to depict evolution. Recently, attention has been focused on domestication of the species within the genus Cuphea, but Cuphea generally exhibits wild traits, such as undeterminate pattern of growth, flowering, seed shattering, seed dormancy, and viscid and glandular hairs on plants. These traits are major constraints to agricultural use. Several breeding and modern biotechnology methods have been attempting to remove these limitations to domestication of Cuphea. Gene flow from wild to domesticated plant species has an important role in relation to the evolution of crop plants. This risk of gene transfer from Cuphea to related weedy species, as well as Lythrum, may be production of new aggressive weeds (superweeds). Most of the wild plants, for example Cuphea, have already been adapted to European and USA climate with higher yield and storage, using the different new technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arkcoll DB, Aguiar J (1984) Peach palm (Bactris gasipaes H.B.K.), a new source of vegetable oil from the wet tropics. J Sci Food Agric 35:520–526

    Article  CAS  Google Scholar 

  • Aubert D, Chen L, Moon YH, Martin D, Castle LA, Yang CH, Sung ZR (2001) EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell 13:1865–1875

    Article  CAS  PubMed  Google Scholar 

  • Badr A, Muller K, Schafer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Berti MT, Johnson BL (2008) Growth and development of Cuphea. Ind Crops Prod 27:265–271

    Article  Google Scholar 

  • Berti MT, Johnson BI (2008) Changes during physiological maturing of cuphea. Field Crops Res 106:163–170

    Google Scholar 

  • Blasquez M (2000) Flower development pathways. J Cell Sci 113:3547–3548

    Google Scholar 

  • Blatt CCT, Salatino A, Salatino MLF, del Pero Martinez MA, Cavalcanti TB (1994) Flavonoids of Diplusodon (Lythraceae). Biochem Syst Ecol 22:101–107

    Article  CAS  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  CAS  PubMed  Google Scholar 

  • Brenton SS, Gesch RW (2004) Water use and roots length density of Cuphea ssp. Influence by row spacing ans sowing date. Agron J 96:1475–1480

    Google Scholar 

  • Cavalcanti TB, Graham SA (2005) New taxa in Lythraceae from Latin America. Novon 15:59–68

    Google Scholar 

  • Chen L, Cheng JC, Castle L, Sung ZR (1997) EMF genes regulate Arabidopsis inflorescence development. Plant Cell 9:2011–2024

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, London, UK

    Google Scholar 

  • Dehes K, Edwards P, Hayes T, Cranmer AN, Fillatti J (1996) Two novel thioesterase are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil. Plant Physiol 100:203–210

    Article  Google Scholar 

  • Finlay MR (2004) Old efforts at new uses: a brief history of chemurgy and the American search for biobased materials. J Ind Ecol 7:33–46

    Article  Google Scholar 

  • Forcella F, Gesch RW, Isbell TA (2005) Seed yield, oil and fatty acids of Cuphea in Northwestern Corn Belt. Crop Sci 45:2195–2202

    Article  CAS  Google Scholar 

  • Ford CS, Allainguillaume J, Chantler PG, Cuccato G, Allender CJ, Wilkinson MJ (2006) Spontaneous gene flow from rapeseed (Brassica napus) to wild Brassica oleracea. Proc R Soc B 273:3111–3115

    Article  CAS  PubMed  Google Scholar 

  • Gathman AC, Ray DT (1987) Meiotic analysis of 14 Cuphea species and two interspecific hybrids. J Hered 78:315–318

    Google Scholar 

  • Geller DP, Goodrum JW, Knapp SJ (1999) Fuel properties of oil from genetically altered Cuphea viscosissima. Ind Crop Prod 9:85–91

    Article  CAS  Google Scholar 

  • Gepts P, Papa R (2003) Possible effects of (trans) gene flow from crops on the genetic diversity from landraces and wild relatives. Environ Biosaf Res 2:89–103

    Google Scholar 

  • Gesch RW, Cermak SC, Isbell TA, Forcella F (2005) Seed yield and oil content of Cuphea as affected by harvest date. Agron J 7:817–822

    Article  Google Scholar 

  • Graham SA (1995) Innovative seed morphology in Lythraceae. Am J Bot 82:132 (Abstr)

    Google Scholar 

  • Graham SA, Cavalcanti TB (2001) New chromosome counts in the Lythraceae and a review of chromosome numbers in the family. Syst Bot 26:445–458

    Google Scholar 

  • Graham SA, Crisci JV, Hoch PC (1993) Cladiscic analysis of the Lythraceae sensu lato based on morphological characters. Bot J Linn Soc 113:1–33

    Article  Google Scholar 

  • Graham SA, Freudenstein J, Luker M (2006) A phylogenetic study of Cuphea (Lythraceae) based on morphology and nuclear rDNA, ITS sequences. Syst Bot 31:764–778

    Article  Google Scholar 

  • Graham SA, Hirsinger F, Röbbelen G (1981) Fatty acid of Cuphea seed lipids and their systematic significance. Am J Bot 8:908–917

    Article  Google Scholar 

  • Graham SA, Kleimann R (1987) Seed lipids of the Lythraceae. Biochem Syst Ecol 15:433–439

    Article  CAS  Google Scholar 

  • Graham SA (1989) Revision of Cuphea sect. Leptocalyx (Lythracaea) Syst Bot 14:43–76

    Google Scholar 

  • Graham SA, Timmermann BN, Mabry TJ (1980) Flavonoids glycosides in Ammania (Lythraceae). J Nat Prod 34:644–645

    Article  Google Scholar 

  • Hammond EG, Pan WP, Mora Urpi J (1982) Fatty acid composition and glyceride structure of the mesocarp and kernel oils of the palm (Bactris gasipaes H.B.K.). Rev Biol Trop 30:91–93

    Google Scholar 

  • Hillis DM, Moritz G, Mable BK (1996) Molecular systematics. Sinauer Associates, Sunderland

    Google Scholar 

  • Hirsinger F, Knowles PF (1984) Morphological and agronomic description of selected Cuphea germplasm. Econ Bot 38:439–451

    Article  Google Scholar 

  • Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Mol Ecol 8:159–173

    Article  Google Scholar 

  • Kimpel JA (1999) Freedom to operate: intellectual property protection in plant biology and its implications for the conduct of research. Annu Rev Phytopathol 37:29–51

    Article  CAS  PubMed  Google Scholar 

  • Knapp SJ (1993) Breakthroughs towards the domestication of Cuphea. In: Janick J, Simon JE (eds) New crops. Wiley, New York, USA, pp 372–379

    Google Scholar 

  • Koehne E (1881) Lyhtraceae monographice describuntur, VI Cuphea. Botanische Jahrebucher fur Systematic Pflanzengeschichte und Pflancengeographie 1:437–458

    Google Scholar 

  • Koehne E (1903) Lythraceae. In: Engler A (ed) Das Pflanzenreich. IV 216, Heft 17. Wilhelm Engelmann, Leipzig, Germany, pp 1–326

    Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Article  Google Scholar 

  • Konishi S, Izawa T, Yang S, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396

    Article  CAS  PubMed  Google Scholar 

  • Ladizinsky G (1985) Founder effect in crop–plant evolution. Econ Bot 39:191–199

    Article  Google Scholar 

  • Lorey W, Röbbelen G (1984) Interspecific hybridization within the genus Cuphea (Lythraceae). Agnew Bot 58:423–432

    Google Scholar 

  • Myers JH, Denoth M, Shaben J (2004) Invasive plants: their impact and control in changing environments. In: Proceedings of the species at risk, Victoria, USA, 2–6 Mar 2004, pp 1–5

    Google Scholar 

  • Olejniczak J, Adamska E (2000) The effect of different level of irrigation quantitative traits in two Cuphea species. Biul Inst Hod Akl Rosl 216:491–495

    Google Scholar 

  • Olejniczak J, Adamczak G, Wojciechowski A (2006) Rapeseed as on the main source renewable energy in sustainable agriculture. In: Jezowski et al. (ed) Alternative plants for sustainable agriculture, vol 5. PAGEN IGR, PAN, Poznan, Poland, pp 141–145

    Google Scholar 

  • Olejniczak J, Adamska E (1999) Adaptation of Cuphea oil plant to Polish climatic conditions. In: Schriftenreihe “Nachwachsende Rohstoffe”. Band 14, Landwirtschaftsverlag GmbH MĂŒnster, Germany, pp 375–380

    Google Scholar 

  • Olejniczak J (1996) Induced and recombination variability of Cuphea oil plant. Monograph No. 5. IPG, PAS, PoznaƄ, Poland, pp 1–50

    Google Scholar 

  • Ostergaard L, Kempin SA, Bies D, Klee HJ, Yanofsky F (2006) Pod shattering-resistance Brassica fruit production by ectopic expression of the FRUITFULL gene. Plant Biot J 4:45–51

    Article  CAS  Google Scholar 

  • Patel VC, Skvarla JJ, Raven PH (1984) Pollen characters in relation to the delimination of the Myrtales. Ann MO Bot Gard 71:859–969

    Article  Google Scholar 

  • Princen LH (1984) Development of new crops for industrial raw materials. J Am Oil Chem Soc 61:235A

    Article  Google Scholar 

  • Przybecki Z, Olejniczak J, Adamska E (2001a) Regeneration of Cuphea tolucana in vitro culture. Cell Mol Biol Lett 6:587–591

    CAS  PubMed  Google Scholar 

  • Przybecki Z, Olejniczak J, Adamska E (2001b) Regeneration of Cuphea wrightii (Peyr 651) and fertile C. wrightii x C. tolucana hybrids from leaf explants. Cell Mol Biol Lett 6:859–870

    CAS  PubMed  Google Scholar 

  • Roath WW (1998) Managing seedling emergence of Cuphea in Iowa. J Iowa Acad Sci 105:23–26

    Google Scholar 

  • Röbbelen G, Hirsinger F (1982) Cuphea, the first annual oil crop for the production of medium-chain triglycerides (MCT). In: Improvement of oil seed and industrial crops by induced mutations. Panel Proceedings Series – International Atomic Energy Agency, Vienna, Austria, pp 161–170

    Google Scholar 

  • Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet 3:429–331

    CAS  PubMed  Google Scholar 

  • Santos DYAC, Salatino MFL, Salatino A (1995) Flavonoids of species of Cuphea (Lythraceae) from Brasil. Biochem Syst Ecol 23:99–103

    Article  CAS  Google Scholar 

  • Santos DYAC, Salatino MFL, Salatino A (2000) Flavonoids of Lafoensia (Lythraceae). Biochem Syst Ecol 28:487–488

    Article  CAS  Google Scholar 

  • Schwab M (2008) Identificetion of novel seed dormancy mutants in Arabidopsis thaliana and molecular and biochemical characterization of the seed dormancy gene DOG1. PhD der UniversitĂ€t zu Kölln, Germany

    Google Scholar 

  • Sharratt BS, Gesch RW (2004) Water use and root length density of Cuphea spp. influenced by row spacing and sowing date. Agron J 96:1475–1480

    Article  Google Scholar 

  • Sobisz Z (2007) Phytocenoses with Heracleum Sosnowskyi Manden. In: Central Pomerania. Rocz AR Poznan 386 Bot Sect 11:53–56

    Google Scholar 

  • Tobe H, Graham S, Raven P (1998) Floral morphology and evolution in Lythracea sensu lato. In: Owens SJ, Rudall PJ (eds) Reproductive biology. Royal Botanical Garden, Richamond, UK

    Google Scholar 

  • Torada A, Amano Y (2002) Effect of seed coat color on dormancy in different environments. Euphytica 126:99–105

    Article  CAS  Google Scholar 

  • UN (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Voelker TA, Hayes TR, Cranmer AC, Davies HM (1996) Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. Plant J 9:229–241

    Article  CAS  Google Scholar 

  • Voelker TA, Worrel AM, Anderson L, Bleibaum J, Fan C, Hawkins DH, Radke SE, Davies HM (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257:72–74

    Article  CAS  PubMed  Google Scholar 

  • Wrigth SIVBI, Schroeder SG, Yamasaki M, Daeblej JF (2005) The effect of artifical selection on the maize genome. Science 308:1310–1314

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Olejniczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olejniczak, J. (2011). Cuphea. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14871-2_6

Download citation

Publish with us

Policies and ethics