Skip to main content

Improved Approximability and Non-approximability Results for Graph Diameter Decreasing Problems

  • Conference paper
Mathematical Foundations of Computer Science 2010 (MFCS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6281))

  • 961 Accesses

Abstract

In this paper we study two variants of the problem of adding edges to a graph so as to reduce the resulting diameter. More precisely, given a graph G = (V,E), and two positive integers D and B, the Minimum-Cardinality Bounded-Diameter Edge Addition (MCBD) problem is to find a minimum cardinality set F of edges to be added to G in such a way that the diameter of G + F is less than or equal to D, while the Bounded-Cardinality Minimum-Diameter Edge Addition (BCMD) problem is to find a set F of B edges to be added to G in such a way that the diameter of G + F is minimized. Both problems are well known to be NP-hard, as well as approximable within O(logn logD) and 4 (up to an additive term of 2), respectively. In this paper, we improve these long-standing approximation ratios to O(logn) and to 2 (up to an additive term of 2), respectively. As a consequence, we close, in an asymptotic sense, the gap on the approximability of the MCBD problem, which was known to be not approximable within c logn, for some constant c > 0, unless P=NP. Remarkably, as we further show in the paper, our approximation ratio remains asymptotically tight even if we allow for a solution whose diameter is optimal up to a multiplicative factor approaching \(\frac{5}{3}\). On the other hand, on the positive side, we show that at most twice of the minimal number of additional edges suffices to get at most twice of the required diameter.

This work was partially supported by the PRIN 2008 research project COGENT (COmputational and GamE-theoretic aspects of uncoordinated NeTworks), funded by the Italian Ministry of Education, University, and Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Gyárfás, A., Ruszinkó, M.: Decreasing the diameter of bounded degree graphs. Journal of Graph Theory 35(3), 161–172 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brandstädt, A., Le, V.B., Spinrad, J.: Graph classes: a survey. SIAM Monographs on Discrete Mathematics and Applications (1999)

    Google Scholar 

  3. Chandrasekaran, R., Daughety, A.: Location on tree networks: p-centre and n-dispersion problems. Mathematics of Operations Research 6(1), 50–57 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chepoi, V., Estellon, B., Nouioua, K., Vaxès, Y.: Mixed covering of trees and the augmentation problem with odd diameter constraints. Algorithmica 45(2), 209–226 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chepoi, V., Vaxès, Y.: Augmenting trees to meet biconnectivity and diameter constraints. Algorithmica 33(2), 243–262 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chung, F.: Diameters of graph: old problems and new results. Congr. Numer. 60, 295–317 (1987)

    MathSciNet  Google Scholar 

  7. Chung, F., Garey, M.: Diameter bounds for altered graphs. Journal of Graph Theory 8(4), 511–534 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dodis, Y., Khanna, S.: Designing networks with bounded pairwise distance. In: STOC, pp. 750–759 (1999)

    Google Scholar 

  9. Erdös, P., Gyárfás, A., Ruszinkó, M.: How to decrease the diameter of triangle-free graphs. Combinatorica 18(4), 493–501 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Erdös, P., Rényi, A.: On a problem in the theory of graphs. Publ. Math. Inst. Hung. Acad. Sci. B(7), 623–639 (1963)

    Google Scholar 

  11. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MATH  Google Scholar 

  12. Grigorescu, E.: Decreasing the diameter of cycles. J. Graph Theory 43(4), 299–303 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ishii, T., Yamamoto, S., Nagamochi, H.: Augmenting forests to meet odd diameter requirements. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 434–443. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Kapoor, S., Sarwat, M.: Bounded-diameter minimum-cost graph problems. Theory Comput. Syst. 41(4), 779–794 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems. SIAM Journal on Applied Mathematics 37(3), 513–538 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, C.-L., McCormick, S.T., Simchi-Levi, D.: On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problem. Operations Research Letters 11, 303–308 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Plesník, J.: On the computational complexity of centers locating in a graph. Aplikace Mat. 25

    Google Scholar 

  18. Plesník, J.: The complexity of designing a network with minimum diameter. Networks 11(1), 77–85 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability pcp characterization of np. In: STOC, pp. 475–484 (1997)

    Google Scholar 

  20. Schoone, A.A., Bodlaender, H.L., van Leeuwen, J.: Diameter increase caused by edge deletion. Journal of Graph Theory 11(3), 409–427 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bilò, D., Gualà, L., Proietti, G. (2010). Improved Approximability and Non-approximability Results for Graph Diameter Decreasing Problems. In: Hliněný, P., Kučera, A. (eds) Mathematical Foundations of Computer Science 2010. MFCS 2010. Lecture Notes in Computer Science, vol 6281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15155-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15155-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15154-5

  • Online ISBN: 978-3-642-15155-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics