Skip to main content

Improved Simulation of Nondeterministic Turing Machines

  • Conference paper
Mathematical Foundations of Computer Science 2010 (MFCS 2010)

Abstract

The standard simulation of a nondeterministic Turing machine (NTM) by a deterministic one essentially searches a large bounded-degree graph whose size is exponential in the running time of the NTM. The graph is the natural one defined by the configurations of the NTM. All methods in the literature have required time linear in the size S of this graph. This paper presents a new simulation method that runs in time \(\tilde{O}(\sqrt{S})\). The search savings exploit the one-dimensional nature of Turing machine tapes. In addition, we remove most of the time-dependence on nondeterministic choice of states and tape head movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). J. Algorithms 54(2), 168–204 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Doty, D.: An oracle a such that \(\mbox{NTIME}^{A}(t(n)) \not\subseteq \mbox{DTIME}^{A}(2^{\varepsilon t(n)})\), via Kolmogorov complexity. Private Communication (2009)

    Google Scholar 

  3. Feige, U., Kilian, J.: On limited versus polynomial nondeterminism. Chicago J. Theoret. Comput. Sci., Article 1, 20 p. (1997) (electronic)

    Google Scholar 

  4. Hopcroft, J., Paul, W.J., Valiant, L.: On time versus space. J. Assoc. Comput. Mach. 24(2), 332–337 (1977)

    MATH  MathSciNet  Google Scholar 

  5. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4), 413–423 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kannan, R.: Towards separating nondeterministic time from deterministic time. In: 22nd Annual Symposium on Foundations of Computer Science, SFCS 1981, pp. 235–243 (October 1981)

    Google Scholar 

  7. Kannan, R.: Alternation and the power of nondeterminism. In: STOC 1983: Proceedings of the fifteenth annual ACM symposium on Theory of computing, pp. 344–346. ACM, New York (1983)

    Chapter  Google Scholar 

  8. Lipton, R.J., Viglas, A.: Non-uniform depth of polynomial time and space simulations. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp. 311–320. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment. Math. Univ. Carolin. 26(2), 415–419 (1985)

    MATH  MathSciNet  Google Scholar 

  10. Papadimitriou, C.H.: Computational complexity. Addison-Wesley Publishing Company, Reading (1994)

    MATH  Google Scholar 

  11. Paul, W.J., Pippenger, N., Szemeredi, E., Trotter, W.T.: On determinism versus non-determinism and related problems. In: 24th Annual Symposium on Foundations of Computer Science, pp. 429–438 (November 1983)

    Google Scholar 

  12. Paul, W.J., Reischuk, R.: On time versus space. II. J. Comput. System Sci. 22(3), 312–327 (1981), Special issued dedicated to Michael Machtey

    Article  MATH  MathSciNet  Google Scholar 

  13. Pippenger, N.: Probabilistic simulations (preliminary version). In: STOC 1982: Proceedings of the fourteenth annual ACM symposium on Theory of computing, pp. 17–26. ACM, New York (1982)

    Chapter  Google Scholar 

  14. Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. Assoc. Comput. Mach. 26(2), 361–381 (1979)

    MATH  MathSciNet  Google Scholar 

  15. Santhanam, R.: Relationships among time and space complexity classes (2001), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.5170

  16. Schroeppel, R., Shamir, A.: A T·S 2 = O(2n) time/space tradeoff for certain NP-complete problems. In: 20th Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, pp. 328–336. IEEE, New York (1979)

    Google Scholar 

  17. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM J. Comput. 6(3), 537–546 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. van Melkebeek, D., Santhanam, R.: Holographic proofs and derandomization. SIAM J. Comput. 35(1), 59–90 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  19. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds. In: STOC 2010: Proceedings of the fortysecond annual ACM symposium on Theory of computing (to appear, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kalyanasundaram, S., Lipton, R.J., Regan, K.W., Shokrieh, F. (2010). Improved Simulation of Nondeterministic Turing Machines. In: Hliněný, P., Kučera, A. (eds) Mathematical Foundations of Computer Science 2010. MFCS 2010. Lecture Notes in Computer Science, vol 6281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15155-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15155-2_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15154-5

  • Online ISBN: 978-3-642-15155-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics