Skip to main content

Interfacial Forces and Spectroscopic Study of Confined Fluids

  • Chapter
  • First Online:
Nanotribology and Nanomechanics II

Abstract

In this chapter we discuss three specific issues which are relevant for liquids in intimate contact with solid surfaces. (1) Studies of the hydrodynamic flow of simple and complex fluids within ultra-narrow channels show the effects of flow rate, surface roughness and fluid–surface interaction on the determination of the boundary condition. We draw attention to the importance of the microscopic particulars to the discovery of what boundary condition is appropriate for solving continuum equations and the potential to capitalize on slip at the wall for purposes of materials engineering. (2) We address the long-standing question of the structure of aqueous films near a hydrophobic surface. When water was confined between adjoining hydrophobic and hydrophilic surfaces (a Janus interface), giant fluctuations in shear responses were observed, which implies some kind of flickering, fluctuating complex at the water–hydrophobic interface. (3) Finally we discuss recent experiments that augment friction studies by measurement of diffusion, using fluorescence correlation spectroscopy (FCS). Here spatially resolved measurements showed that translation diffusion slows exponentially with increasing mechanical pressure from the edges of a Hertzian contact toward the center, accompanied by increasingly heterogeneous dynamical responses. This dynamical probe of how liquids order in molecularly thin films fails to support the hypothesis that shear produces a melting transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.N. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic, New York, 1991)

    Google Scholar 

  2. B. Bhushan, J.N. Israelachvili, U. Landman, Nanotribology – Friction, wear and lubrication at the atomic-scale. Nature 374, 607–616 (1995)

    Google Scholar 

  3. J.M. Drake, J. Klafter, P.E. Levitz, R.M. Overney, M. Urbakh, Dynamics in Small Confining Systems V (Materials Research Society, Warrendale, 2000)

    Google Scholar 

  4. S. Granick, Soft matter in a tight spot. Phys. Today 52, 26–31 (1999)

    Google Scholar 

  5. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang, Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)

    Google Scholar 

  6. G. Meyer, N.M. Amer, Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl. Phys. Lett. 57, 2089–2091 (1990)

    Google Scholar 

  7. S. Granick, Y. Zhu, H. Lee, Slippery questions about complex fluids flowing past solids. Nat. Mater. 2, 221–227 (2003)

    Google Scholar 

  8. Y. Zhu, S. Granick, Limits of the hydrodynamic no-slip boundary condition. Phys. Rev. Lett. 88, 106102 (2002)

    Google Scholar 

  9. Y. Zhu, S. Granick, Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys. Rev. Lett. 87, 096105 (2001)

    Google Scholar 

  10. B.S. Massey, Mechanics of Fluids, 6th edn. (Chapman Hall, London, 1989)

    Google Scholar 

  11. P.-G. de Gennes, Viscometric flows of tangled polymers. C. R. Acad. Sci. B. Phys. 288, 219 (1979)

    Google Scholar 

  12. L. Léger, E. Raphael, H. Hervet, Surface-anchored polymer chains: Their role in adhesion and friction. Adv. Polym. Sci. 138, 185–225 (1999)

    Google Scholar 

  13. O.I. Vinogradova, Slippage of water over hydrophobic surfaces. Int. J. Miner. Process. 56, 31–60 (1999)

    Google Scholar 

  14. C. Mak, J. Krim, Quartz-crystal microbalance studies of the velocity dependence of interfacial friction. Phys. Rev. B 58, 5157–5179 (1998)

    Google Scholar 

  15. S.M. Tholen, J.M. Parpia, Slip and the effect of He-4 at the He-3–silicon interface. Phys. Rev. Lett. 67, 334–337 (1991)

    Google Scholar 

  16. C. Huh, L.E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85–101 (1971)

    Google Scholar 

  17. G. Reiter, A.L. Demirel, S. Granick, From static to kinetic friction in confined liquid-films. Science 263, 1741–1744 (1994)

    Google Scholar 

  18. G. Reiter, A.L. Demirel, J.S. Peanasky, L. Cai, S. Granick, Stick to slip transition and adhesion of lubricated surfaces in moving contact. J. Chem. Phys. 101, 2606–2615 (1994)

    Google Scholar 

  19. N.V. Churaev, V.D. Sobolev, A.N. Somov, Slippage of liquids over lyophobic solid surfaces. J. Colloid Interface Sci. 97, 574–581 (1984)

    Google Scholar 

  20. D.Y.C. Chan, R.G. Horn, The drainage of thin liquid films between solid surfaces. J. Chem. Phys. 83, 5311–5324 (1985)

    Google Scholar 

  21. J.N. Israelachvili, Measurement of the viscosity of liquids in very thin films. J. Colloid Interface Sci. 110, 263–271 (1986)

    Google Scholar 

  22. J.F. Nye, A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation. Proc. R. Soc. A 311, 445–467 (1969)

    Google Scholar 

  23. S. Richardson, On the no-slip boundary condition. J. Fluid Mech. 59, 707–719 (1973)

    MATH  Google Scholar 

  24. K.M. Jansons, Determination of the macroscopic (partial) slip boundary condition for a viscous flow over a randomly rough surface with a perfect slip microscopic boundary condition. Phys. Fluids 31, 15–17 (1988)

    MathSciNet  Google Scholar 

  25. P.A. Thompson, M.O. Robbins, Shear flow near solids: epitaxial order and flow boundary condition. Phys. Rev. A 41, 6830–6839 (1990)

    Google Scholar 

  26. P.A. Thompson, S. Troian, A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)

    Google Scholar 

  27. J.-L. Barrat, L. Bocquet, Large slip effect at a nonwetting fluid–solid interface. Phys. Rev. Lett. 82, 4671–4674 (1999)

    Google Scholar 

  28. R. Pit, H. Hervet, L. Liger, Direct experimental evidence of slip in hexadecane–solid interfaces. Phys. Rev. Lett. 85, 980–983 (2000)

    Google Scholar 

  29. V.S.J. Craig, C. Neto, D.R.M. Williams, Shear-dependent boundary slip in aqueous Newtonian liquid. Phys. Rev. Lett. 87, 54504 (2001)

    Google Scholar 

  30. O.A. Kiseleva, V.D. Sobolev, N.V. Churaev, Slippage of the aqueous solutions of cetyltriimethylammonium bromide during flow in thin quartz capillaries. Colloid J. 61, 263–264 (1999)

    Google Scholar 

  31. Y. Zhu, S. Granick, Apparent slip of Newtonian fluids past adsorbed polymer layers. Macromolecules 36, 4658–4663 (2002)

    Google Scholar 

  32. Y. Zhu, S. Granick, The no slip boundary condition switches to partial slip when the fluid contains surfactant. Langmuir 18, 10058–10063 (2002)

    Google Scholar 

  33. J. Baudry, E. Charlaix, A. Tonck, D. Mazuyer, Experimental evidence of a large slip effect at a nonwetting fluid–solid interface. Langmuir 17, 5232–5236 (2002)

    Google Scholar 

  34. D.C. Tretheway, C.D. Meinhart, Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14, L9–L12 (2002)

    Google Scholar 

  35. H.A. Barnes, A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: Its cause, character, and cure. J. Nonnewton. Fluid Mech. 56, 221–251 (1995)

    Google Scholar 

  36. E.C. Achilleos, G. Georgiou, S.G. Hatzikiriakos, Role of processing aids in the extrusion of molten polymers. J. Vinyl Additive Technol. 8, 7–24 (2002)

    Google Scholar 

  37. H. Brenner, V. Ganesan, Molecular wall effects: Are conditions at a boundary ‘boundary conditions’? Phys. Rev. E 61, 6879–6897 (2000)

    Google Scholar 

  38. J. Gao, W.D. Luedtke, U. Landman, Structures, solvation forces and shear of molecular films in a rough nano-confinement. Tribol. Lett. 9, 3–134 (2000)

    Google Scholar 

  39. C. Denniston, M.O. Robbins, Molecular and continuum boundary conditions for a miscible binary fluid. Phys. Rev. Lett. 87, 178302 (2001)

    Google Scholar 

  40. S.E. Campbell, G. Luengo, V.I. Srdanov, F. Wudl, J.N. Israelachvili, Very low viscosity at the solid–liquid interface induced by adsorbed C-60 monolayers. Nature 382, 520–522 (1996)

    Google Scholar 

  41. E. Bonaccurso, M. Kappl, H.-J. Butt, Hydrodynamic force measurements: Boundary slip of water on hydrophilic surfaces and electrokinetic effects. Phys. Rev. Lett. 88, 076103 (2002)

    Google Scholar 

  42. M.M. Britton, P.T. Callaghan, Two-phase shear band structures at uniform stress. Phys. Rev. Lett. 78, 4930–4933 (1997)

    Google Scholar 

  43. O.I. Vinogradova, Drainage of a thin liquid-film confined between hydrophobic surfaces. Langmuir 11, 2213–2220 (1995)

    Google Scholar 

  44. J.S. Peanasky, H.M. Schneider, S. Granick, C.R. Kessel, Self-assembled monolayers on mica for experiments utilizing the surface forces apparatus. Langmuir 11, 953–962 (1995)

    Google Scholar 

  45. H.A. Spikes, The half-wetted bearing. Part 2: Potential application to low load contacts. Proc. Inst. Mech. Eng. Part J 217, 15–26 (2003)

    Google Scholar 

  46. P.-G. de Gennes, On fluid/wall slippage. Langmuir 18, 3413–3414 (2002)

    Google Scholar 

  47. J.W.G. Tyrrell, P. Attard, Atomic force microscope images of nanobubbles on a hydrophobic surface and corresponding force–separation data. Langmuir 18, 160–167 (2002)

    Google Scholar 

  48. N. Ishida, T. Inoue, N. Miyahara, K. Higashitani, Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir 16, 6377–6380 (2000)

    Google Scholar 

  49. U.C. Boehnke, T. Remmler, H. Motschmann, S. Wurlitzer, J. Hauwede, T.M. Fischer, Partial air wetting on solvophobic surfaces in polar liquids. J. Colloid Interface Sci. 211, 243–251 (1999)

    Google Scholar 

  50. K. Lum, D. Chandler, J.D. Weeks, Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999)

    Google Scholar 

  51. X. Zhang, Y. Zhu, S. Granick, Softened hydrophobic attraction between macroscopic surfaces in relative motion. J. Am. Chem. Soc. 123, 6736–6737 (2001)

    Google Scholar 

  52. X. Zhang, Y. Zhu, S. Granick, Hydrophobicity at a Janus Interface. Science 295, 663–666 (2002)

    Google Scholar 

  53. T. Onda, S. Shibuichi, N. Satoh, K. Tsuji, Super-water-repellent fractal surfaces. Langmuir 12, 2125–2127 (1996)

    Google Scholar 

  54. J. Bico, C. Marzolin, D. Quiri, Pearl drops. Europhys. Lett. 47, 220–226 (1999)

    Google Scholar 

  55. S. Herminghaus, Roughness-induced non-wetting. Europhys. Lett. 52, 165–170 (2000)

    Google Scholar 

  56. K. Watanabe, Y. Udagawa, H. Udagawa, Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J. Fluid Mech. 381, 225–238 (1999)

    MATH  Google Scholar 

  57. D.W. Bechert, M. Bruse, W. Hage, R. Meyer, Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 87, 157–171 (2000)

    Google Scholar 

  58. W. Kauzmann, Some forces in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1 (1959)

    Google Scholar 

  59. C. Tanford, The Hydrophobic Effect – Formation of Micelles and Biological Membranes (Wiley-Interscience, New York, 1973). 1973

    Google Scholar 

  60. F.H. Stillinger, Structure in aqueous solutions of nonpolar solutes from the standpont of scaled-particle theory. J. Solution Chem. 2, 141 (1973)

    Google Scholar 

  61. E. Ruckinstein, P. Rajora, On the no-slip boundary-condition of hydrodynamics. J. Colloid Interface Sci. 96, 488–491 (1983)

    Google Scholar 

  62. L.R. Pratt, D. Chandler, Theory of hydrophobic effect. J. Chem. Phys. 67, 3683–3704 (1977)

    Google Scholar 

  63. A. Ben-Naim, Hydrophobic Interaction (Kluwer, New York, 1980)

    Google Scholar 

  64. A. Wallqvist, B.J. Berne, Computer-simulation of hydrophobic hydration forces stacked plates at short-range. J. Phys. Chem. 99, 2893–2899 (1995)

    Google Scholar 

  65. G. Hummer, S. Garde, A.E. Garcia, A. Pohorille, L.R. Pratt, An information theory model of hydrophobic interactions. Proc. Natl. Acad. Sci. U.S.A. 93, 8951–8955 (1996)

    Google Scholar 

  66. Y.K. Cheng, P.J. Rossky, The effect of vicinal polar and charged groups on hydrophobic hydration. Biopolymers 50, 742–750 (1999)

    Google Scholar 

  67. D.M. Huang, D. Chandler, Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding. Proc. Natl. Acad. Sci. U.S.A. 97, 8324–8327 (2000)

    Google Scholar 

  68. G. Hummer, S. Garde, A.E. Garcia, L.R. Pratt, New perspectives on hydrophobic effects. Chem. Phys. 258, 349–370 (2000)

    Google Scholar 

  69. D. Bratko, R.A. Curtis, H.W. Blanch, J.M. Prausnitz, Interaction between hydrophobic surfaces with metastable intervening liquid. J. Chem. Phys. 115, 3873–3877 (2001)

    Google Scholar 

  70. Y.-H. Tsao, D.F. Evans, H. Wennerstvm, Long-range attractive force between hydrophobic surfaces observed by atomic force microscopy. Science 262, 547–550 (1993)

    Google Scholar 

  71. R.F. Considine, C.J. Drummond, Long-range force of attraction between solvophobic surfaces in water and organic liquids containing dissolved air. Langmuir 16, 631–635 (2000)

    Google Scholar 

  72. J.W.G. Tyrrell, P. Attard, Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett. 87, 176104 (2001)

    Google Scholar 

  73. J. Peachey, J. Van Alsten, S. Granick, Design of an apparatus to measure the shear response of ultrathin liquid-films. Rev. Sci. Instrum. 62, 463–473 (1991)

    Google Scholar 

  74. C.Y. Lee, J.A. McCammon, P.J. Rossky, The structure of liquid water at an extended hydrophobic surface. J. Chem. Phys. 80, 4448–4455 (1984)

    Google Scholar 

  75. J.N. Israelachvili, R.M. Pashley, The hydrophobic interaction is long-range, decaying exponentially with distance. Nature 300, 341–342 (1982)

    Google Scholar 

  76. J.N. Israelachvili, R.M. Pashley, Measure of the hydrophobic interaction between 2 hydrophobic surfaces in aqueous-electrolyte solutions. J. Colloid Interface Sci. 98, 500–514 (1984)

    Google Scholar 

  77. R.M. Pashley, P.M. McGuiggan, B.W. Ninham, D.F. Evans, Attractive forces between uncharged hydrophobic surfaces-direct measurement in aqueous-solution. Science 229, 1088–1089 (1985)

    Google Scholar 

  78. P.M. Claesson, C.E. Blom, P.C. Herder, B.W. Ninham, Interactions between water-stable hydrophobic Langmuir–Blodgett monolayers on mica. J. Colloid Interface Sci. 114, 234–242 (1986)

    Google Scholar 

  79. P.M. Claesson, H.K. Christenson, Very long-range attractive forces between uncharged hydrocarbon and fluorocarbon surfaces in water. J. Phys. Chem. 92, 1650–1655 (1988)

    Google Scholar 

  80. H.K. Christenson, P.M. Claesson, J. Berg, P.C. Herder, Forces between fluorocarbon surfactant monolayers – Salt effects on the hydrophobic interact. J. Phys. Chem. 93, 1472–1478 (1989)

    Google Scholar 

  81. O. Spalla, Long-range attraction between surfaces: Existence and amplitude? Curr. Opin. Colloid Interface Sci. 5, 5–12 (2000)

    Google Scholar 

  82. J. Wood, R. Sharma, How long is the long-range hydrophobic attraction? Langmuir 11, 4797–4802 (1995)

    Google Scholar 

  83. J.L. Parker, P.M. Claesson, P. Attard, Bubbles, cavities, and the long-range attraction between hydrophobic surfaces. J. Phys. Chem. 98, 8468–8480 (1994)

    Google Scholar 

  84. A. Carambassis, L.C. Jonker, P. Attard, M.W. Rutland, Forces measured between hydrophobic surfaces due to a submicroscopic bridging bubble. Phys. Rev. Lett. 80, 5357–5360 (1998)

    Google Scholar 

  85. V.S.J. Craig, B.W. Ninham, R.M. Pashley, Direct measurement of hydrophobic forces: A study of dissolved gas, approach rate, and neutron irradiation. Langmuir 15, 1562–1569 (1999)

    Google Scholar 

  86. R.F. Considine, R.A. Hayes, R.G. Horn, Forces measured between latex spheres in aqueous electrolyte: Non-DLVO behavior and sensitivity to dissolved gas. Langmuir 15, 1657–1659 (1999)

    Google Scholar 

  87. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edn. (Wiley, New York, 1982)

    Google Scholar 

  88. Y. Zhu, S. Granick, Viscosity of interfacial water. Phys. Rev. Lett. 87, 096104 (2001)

    Google Scholar 

  89. H.H. Winter, F. Chambon, Analysis of linear viscoelasticity of a cross-linking polymer at the gel point. J. Rheol. 30, 367–382 (1986)

    Google Scholar 

  90. R. Yamamoto, A. Onuki, Dynamics of highly supercooled liquids: Heterogeneity, rheology, and diffusion. Phys. Rev. E 58, 3515–3529 (1998)

    Google Scholar 

  91. A.O. Parry, R. Evans, Influence of wetting on phase-equilibra – A novel mechanism for critical-point shifts in films. Phys. Rev. Lett. 64, 439–442 (1990)

    Google Scholar 

  92. K. Binder, D.P. Landau, A.M. Ferrenberg, Thin ising films with completing walls – A Monte Carlo study. Phys. Rev. E 51, 2823–2838 (1995)

    Google Scholar 

  93. D.K. Schwartz, M.L. Schlossman, E.H. Kawamoto, G.J. Kellog, P.S. Perhan, B.M. Ocko, Thermal diffuse X-ray-scattering studies of the water–vapor interface. Phys. Rev. A 41, 5687–5690 (2000)

    Google Scholar 

  94. S. Granick, Motions and relaxations of confined liquids. Science 253, 1374–1379 (1991)

    Google Scholar 

  95. J. Klein, E. Kumacheva, Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions. J. Chem. Phys. 108, 6996–7009 (1998)

    Google Scholar 

  96. E. Kumacheva, J. Klein, Simple liquids confined to molecularly thin layers. II. Shear and frictional behavior of solidified films. J. Chem. Phys. 108, 7010–7022 (1998)

    Google Scholar 

  97. C. Drummond, J. Israelachvili, Dynamic phase transitions in confined lubricant fluids under shear. Phys. Rev. E 63, 041506 (2001)

    Google Scholar 

  98. Y. Golan, M. Seitz, C. Luo, A. Martin-Herranz, M. Yasa, Y.L. Li, C.R. Safinya, J. Israelachvili, The X-ray surface forces apparatus for simultaneous X-ray diffraction and direct normal and lateral force measurements. Rev. Sci. Instrum. 73, 2486–248 (2002)

    Google Scholar 

  99. Y. Golan, A. Martin-Herranz, Y. Li, C.R. Safinya, J. Israelachvili, Direct observation of shear-induced orientational phase coexistence in a lyotropic system using a modified X-ray surface forces apparatus. Phys. Rev. Lett. 86, 1263–1266 (2001)

    Google Scholar 

  100. S.M. Baker, G. Smith, R. Pynn, P. Butler, J. Hayter, W. Hamilton, L. Magid, Shear cell for the study of liquid–solid interfaces by neutron scattering. Rev. Sci. Instrum. 65, 412–416 (1994)

    Google Scholar 

  101. T.L. Kuhl, G.S. Smith, J.N. Israelachvili, J. Majewski, W. Hamilton, Neutron confinement cell for investigating complex fluids. Rev. Sci. Instrum. 72, 1715–1720 (2001)

    Google Scholar 

  102. O.H. Seeck, H. Kim, D.R. Lee, D. Shu, I.D. Kaendler, J.K. Basu, S.K. Sinha, Observation of thickness quantization in liquid films confined to molecular dimension. Europhys. Lett. 60, 376–382 (2002)

    Google Scholar 

  103. A. Dhinojwala, S. Granick, Micron-gap rheo-optics with parallel plates. J. Chem. Phys. 107, 8664–8667 (1998)

    Google Scholar 

  104. I. Soga, A. Dhinojwala, S. Granick, Optorheological studies of sheared confined fluids with mesoscopic thickness. Langmuir 4, 1156–1161 (1998)

    Google Scholar 

  105. S. Mamedov, A.D. Schwab, A. Dhinojwala, A device for surface study of confined micron thin films in a total internal reflection geometry. Rev. Sci. Instrum. 73, 2321–2324 (2002)

    Google Scholar 

  106. P. Frantz, F. Wolf, X.D. Xiao, Y. Chen, S. Bosch, M. Salmeron, Design of surface forces apparatus for tribolgy studies combined with nonlinear optical spectroscopy. Rev. Sci. Instrum. 68, 2499–2504 (1997)

    Google Scholar 

  107. X.S. Xie, J.K. Trautman, Optical studies of single molecules at room temperature. Annu. Rev. Phys. Chem. 49, 441–480 (1998)

    Google Scholar 

  108. W.E. Moerner, M. Orritt, Illuminating single molecules. Science 283, 670–1676 (1999)

    Google Scholar 

  109. L.A. Deschenes, D.A. Vanden Bout, Single molecule studies of heterogeneous dynamics in polymer melts near the glass transition. Science 292, 255–258 (2001)

    Google Scholar 

  110. A. Mukhopadhyay, S. Granick, An integrated platform for surface force measurements and fluorescence correlation spectroscopy. Rev. Sci. Instrum. 74, 3067–3072 (2003)

    Google Scholar 

  111. A. Mukhopadhyay, J. Zhao, S.C. Bae, S. Granick, Contrasting friction and diffusion in molecularly-thin films. Phys. Rev. Lett. 89, 136103 (2002)

    Google Scholar 

  112. K.M. Berland, P.T.C. So, E. Gratton, 2-Photon fluorescence correlation spectroscopy – Method and application to the intracellular environment. Biophys. J. 68, 694–701 (1995)

    Google Scholar 

  113. U. Kettling, A. Koltermann, P. Schwille, M. Eigen, Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 95, 1416–1420 (1998)

    Google Scholar 

  114. A.M. Lieto, R.C. Cush, N.L. Thompson, Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys. J. 85, 3294–3302 (2003)

    Google Scholar 

  115. P. Schwille, U. Haupts, S. Maiti, W.W. Webb, Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J. 77, 2251–2265 (1999)

    Google Scholar 

  116. W.W. Webb, Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus. Appl. Opt. 40, 3969–3983 (2001)

    Google Scholar 

  117. P.S. Dittrich, P. Schwill, Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation. Appl. Phys. B 73, 829–837 (2001)

    Google Scholar 

  118. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999), p. 7

    Google Scholar 

  119. I. Sridhar, K.L. Johnson, N.A. Fleck, Adhesion mechanics of the surface force apparatus. J. Appl. Phys. D 30, 1710–1719 (1997)

    Google Scholar 

  120. Y. Zhu, S. Granick, Reassessment of solidification in fluids confined between mica sheets. Langmuir 19, 8148–8151 (2003)

    Google Scholar 

  121. A. Mukhopadhyay, S.C. Bae, J. Zhao, S. Granick, How confined lubricants diffuse during shear. Phys. Rev. Lett. 93, 236105 (2004)

    Google Scholar 

  122. H.-W. Hu, G. Carson, S. Granick, Relaxation-time of confined liquids under shear. Phys. Rev. Lett. 66, 2758–2761 (1991)

    Google Scholar 

  123. K.N. Pham, A.M. Puertas, J. Bergenholtz, S.U. Egelhaaf, A. Moussaid, P.N. Pusey, B. Schofield, M.E. Cates, M. Fuchs, W.C.K. Poon, Multiple glassy states in a simple model system. Science 296, 104–106 (2002)

    Google Scholar 

  124. Z.Q. Lin, S. Granick, Platinum nanoparticles at mica surfaces. Langmuir 19, 7061–7070 (2003)

    Google Scholar 

  125. Y. Zhu, S. Granick, Superlubricity: A paradox about confined fluids resolved. Phys. Rev. Lett. 93, 096101 (2004)

    Google Scholar 

  126. M. Urbakh, J. Klafteer, D. Gourdon, J. Israelachvili, The nonlinear nature of friction. Nature 430, 525–528 (2004)

    Google Scholar 

Download references

Acknowledgement

Y. Elaine Zhu gratefully acknowledges the financial support from the US Department of Energy, Division of Materials Science (Grant No. DE-FG02-07ER46390) and the National Science Foundation (Grant No. CBET-0651408 and CBET-0730813). Ashis Mukhopadhyay acknowledges the supports of the American Chemical Society Petroleum Research fund (PRF No. 44953-G5) and National Science Foundation (Grant No. DMR-0605900). Steve Granick appreciates financial support from the NSF (Surface Engineering program) and also from the NSF (Polymers Program, Grant No. DMR-0605947).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Elaine Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhu, Y.E., Mukhopadhyay, A., Granick, S. (2011). Interfacial Forces and Spectroscopic Study of Confined Fluids. In: Bhushan, B. (eds) Nanotribology and Nanomechanics II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15263-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15263-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15262-7

  • Online ISBN: 978-3-642-15263-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics