Skip to main content

Gecko Feet: Natural Hairy Attachment Systems for Smart Adhesion

  • Chapter
  • First Online:
Nanotribology and Nanomechanics II

Abstract

leg attachment pad gecko foot smart adhesion The leg attachment pads of several creatures, including many insects, spiders, and lizards, are capable of attaching to a variety of surfaces and are used for locomotion. Geckoes, in particular, have hairy attachment the largest mass and have developed the most complex hairy attachment structures capable of smart smart adhesion adhesion – the ability to cling to different smooth and rough surfaces and detach at will. These microscale hair animals make use of about three million microscale hairs (setae) (about 14,000 mm−2) that nanoscale spatula branch off into hundreds of nanoscale spatulae (about three billion spatula on two feet). This so-called division of contacts provides high dry adhesion. This multiple-level hierarchically structured surface construction provides the gecko with the compliance and adaptability to create a large real area of contact with a variety of surfaces. Modeling of the gecko attachment system as a hierarchical hierarchical spring model spring model has provided insight into the adhesion enhancement generated by this system. van der Waals forces are the primary mechanism utilized to adhere to surfaces, and capillary forces are a secondary effect that can further increase the adhesion force. Preload applied to the setae increases adhesive force. Although a gecko is capable of producing of the order of 20 N of adhesive force, it retains the ability to remove its feet from an attachment surface at will. The adhesive strength of gecko setae is dependent on orientation; maximum adhesion occurs at 30°. During walking, a gecko is able to peel its foot from surfaces by changing the angle at fibrillar structure which its setae contact the surface. Manmade fibrillar structures capable of replicating gecko adhesion superadhesive tape wall-climbing robot have the potential for use in dry superadhesive tapes and treads for wall-climbing robots for various applications. These structures can be created using micro/nanofabrication techniques or self-assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Gorb, Attachment Devices of Insect Cuticles (Kluwer, Dordrecht 2001)

    Google Scholar 

  2. B. Bhushan, Adhesion of multilevel hierarchical attachment systems in gecko feet, J. Adhes. Sci. Technol. 21, 1213–1258 (2007)

    Article  Google Scholar 

  3. B. Bhushan, A.G. Peressadko, T.W. Kim, Adhesion analysis of two-level hierarchical morphology in natural attachment systems for ‘smart adhesion’, J. Adhes. Sci. Technol. 20, 1475–1491 (2006)

    Article  Google Scholar 

  4. A.G. Kluge, Gekkotan lizard taxonomy, Hamadryad 26, 1–209 (2001)

    Google Scholar 

  5. D. Han, K. Zhou, A.M. Bauer, Phylogenetic relationships among gekkotan lizards inferred from C-mos nuclear DNA sequences and a new classification of the Gekkota, Biol. J. Linn. Soc. 83, 353–368 (2004)

    Article  Google Scholar 

  6. R. Ruibal, V. Ernst, The structure of the digital setae of lizards, J. Morphol. 117, 271–294 (1965)

    Article  Google Scholar 

  7. U. Hiller, Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien, Z. Morphol. Tiere 62, 307–362 (1968), in German

    Article  Google Scholar 

  8. D.J. Irschick, C.C. Austin, K. Petren, R.N. Fisher, J.B. Losos, O. Ellers, A comparative analysis of clinging ability among pad-bearing lizards, Biol. J. Linn. Soc. 59, 21–35 (1996)

    Article  Google Scholar 

  9. K. Autumn, How gecko toes stick, Am. Sci. 94, 124–132 (2006)

    Article  Google Scholar 

  10. D.W. Tinkle, Gecko, In. Encyclopedia Americana, Vol. 12 (Grolier, Norwich, 1992), p. 359

    Google Scholar 

  11. Aristotle, Historia Animalium (The History of Animals) (1918), transl. by D.A.W. Thompson, http://classics.mit.edu/Aristotle/history_anim.html

  12. A.P. Russell, A contribution to the functional morphology of the foot of the Tokay, Gekko gecko, J. Zool. London 176, 437–476 (1975)

    Article  Google Scholar 

  13. A.P. Russell, The morphological basis of weight-bearing in the scansors of the Tokay gecko, Can. J. Zool. 64, 948–955 (1986)

    Article  Google Scholar 

  14. E.E. Williams, J.A. Peterson, Convergent and alternative designs in the digital adhesive pads of scincid lizards, Science 215, 1509–1511 (1982)

    Article  Google Scholar 

  15. H.H. Schleich, W. Kästle, Ultrastrukturen an Gecko-Zehen, Amphib. Reptil. 7, 141–166 (1986), in German

    Article  Google Scholar 

  16. K. Autumn, A.M. Peattie, Mechanisms of adhesion in geckos, Integr. Comp. Biol. 42, 1081–1090 (2002)

    Article  Google Scholar 

  17. E. Arzt, S. Gorb, R. Spolenak, From micro to nano contacts in biological attachment devices, Proc. Natl. Acad. Sci. USA 100, 10603–10606 (2003)

    Article  Google Scholar 

  18. J. Wagler, Natürliches System der Amphibien (Cotta’sche Buchhandlung, Munich 1830), in German

    Google Scholar 

  19. G. Simmermacher, Untersuchungen über Haftapparate an Tarsalgliedern von Insekten, Z. Wiss. Zool. 40, 481–556 (1884), in German

    Google Scholar 

  20. H.R. Schmidt, Zur Anatomie und Physiologie der Geckopfote, Jena. Z. Naturwiss. 39, 551 (1904), in German

    Google Scholar 

  21. S.L. Hora, The adhesive apparatus on the toes of certain geckos and tree frogs, J. Asiat. Soc. Beng. 9, 137–145 (1923)

    Google Scholar 

  22. W.D. Dellit, Zur Anatomie und Physiologie der Geckozehe, Jena. Z. Naturwiss. 68, 613–658 (1934), in German

    Google Scholar 

  23. J.G.J. Gennaro, The gecko grip, Nat. Hist. 78, 36–43 (1969)

    Google Scholar 

  24. N.E. Stork, Experimental analysis of adhesion of Chrysolina polita on a variety of surfaces, J. Exp. Biol. 88, 91–107 (1980)

    Google Scholar 

  25. K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Adhesive force of a single gecko foot-hair, Nature 405, 681–685 (2000)

    Article  Google Scholar 

  26. K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, R.J. Full, Evidence for van der Waals adhesion in gecko setae, Proc. Natl. Acad. Sci. USA 99, 12252–12256 (2002)

    Article  Google Scholar 

  27. P.J. Bergmann, D.J. Irschick, Effects of temperature on maximum clinging ability in a diurnal gecko: evidence for a passive clinging mechanism?, J. Exp. Zool. A 303, 785–791 (2005)

    Article  Google Scholar 

  28. G. Huber, H. Mantz, R. Spolenak, K. Mecke, K. Jacobs, S.N. Gorb, E. Arzt, Evidence for capillarity contributions to gecko adhesion from single spatula and nanomechanical measurements, Proc. Natl. Acad. Sci. USA 102, 16293–16296 (2005)

    Article  Google Scholar 

  29. G. Huber, S.N. Gorb, R. Spolenak, E. Arzt, Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy, Biol. Lett. 1, 2–4 (2005)

    Article  Google Scholar 

  30. T.W. Kim, B. Bhushan, The adhesion analysis of multilevel hierarchical attachment system contacting with a rough surface, J. Adhes. Sci. Technol. 21, 1–20 (2007)

    Article  MATH  Google Scholar 

  31. T.W. Kim, B. Bhushan, Effect of stiffness of multilevel hierarchical attachment system on adhesion enhancement, Ultramicroscopy 107, 902–912 (2007)

    Article  Google Scholar 

  32. T.W. Kim, B. Bhushan, Optimization of biomimetic attachment system contacting with a rough surface, J. Vac. Sci. Technol. A 25, 1003–1012 (2007)

    Article  Google Scholar 

  33. T.W. Kim, B. Bhushan, The adhesion model considering capillarity for gecko attachment system, J. R. Soc. Interface 5, 319–327 (2008)

    Article  Google Scholar 

  34. W. Federle, Why are so many adhesive pads hairy?, J. Exp. Biol. 209, 2611–2621 (2006)

    Article  Google Scholar 

  35. A.B. Kesel, A. Martin, T. Seidl, Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata, J. Exp. Biol. 206, 2733–2738 (2003)

    Article  Google Scholar 

  36. A.M. Peattie, R.J. Full, Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives, Proc. Natl. Acad. Sci. USA 104, 18595–18600 (2007)

    Article  Google Scholar 

  37. H. Gao, X. Wang, H. Yao, S. Gorb, E. Arzt, Mechanics of hierarchical adhesion structures of geckos, Mech. Mater. 37, 275–285 (2005)

    Article  Google Scholar 

  38. P.F.A. Maderson, Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards, Nature 2003, 780–781 (1964)

    Article  Google Scholar 

  39. N. Rizzo, K. Gardner, D. Walls, N. Keiper-Hrynko, D. Hallahan, Characterization of the structure and composition of gecko adhesive setae, J. R. Soc. Interface 3, 441–451 (2006)

    Article  Google Scholar 

  40. B.N.J. Persson, S. Gorb, The effect of surface roughness on the adhesion of elastic plates with application to biological systems, J. Chem. Phys. 119, 11437–11444 (2003)

    Article  Google Scholar 

  41. B. Bhushan, Principles and Applications of Tribology (Wiley, New York, 1999)

    Google Scholar 

  42. B. Bhushan, Introduction to Tribology (Wiley, New York, 2002)

    Google Scholar 

  43. B. Bhushan (Ed.), Nanotribology and Nanomechanics – An Introduction, 2nd edn. (Springer, Berlin, Heidelberg 2008)

    Google Scholar 

  44. K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids, Proc. R. Soc. A 324, 301–313 (1971)

    Article  Google Scholar 

  45. J.E.A. Bertram, J.M. Gosline, Functional design of horse hoof keratin: the modulation of mechanical properties through hydration effects, J. Exp. Biol. 130, 121–136 (1987)

    Google Scholar 

  46. F.M. Orr, L.E. Scriven, A.P. Rivas, Pendular rings between solids: meniscus properties and capillary forces, J. Fluid. Mech. 67, 723–742 (1975)

    Article  MATH  Google Scholar 

  47. S. Cai, B. Bhushan, Effects of symmetric and asymmetric contact angles and division of menisci on meniscus and viscous forces during separation, Philos. Mag. 87, 5505–5522 (2007)

    Article  Google Scholar 

  48. S. Cai, B. Bhushan, Meniscus and viscous forces during separation of hydrophilic and hydrophobic surfaces with liquid mediated contacts, Mater. Sci. Eng. R 61, 78–106 (2008), (invited)

    Article  Google Scholar 

  49. M. Sitti, R.S. Fearing, Synthetic gecko foot-hair for micro/nano structures as dry adhesives, J. Adhes. Sci. Technol. 17, 1055–1073 (2003)

    Article  Google Scholar 

  50. K. Autumn, C. Majidi, R.E. Groff, A. Dittmore, R. Fearing, Effective elastic modulus of isolated gecko setal arrays, J. Exp. Biol. 209, 3558–3568 (2006)

    Article  Google Scholar 

  51. G.J. Shah, M. Sitti, Modeling and design of biomimetic adhesives inspired by gecko foot-hairs, IEEE Int. Conf. Robot. Biomim. (2004) pp. 873–878

    Google Scholar 

  52. A. Jagota, S.J. Bennison, Mechanics of adhesion through a fibrillar microstructure, Integr. Comp. Biol. 42, 1140–1145 (2002)

    Article  Google Scholar 

  53. Y. Tian, N. Pesika, H. Zeng, K. Rosenberg, B. Zhao, P. McGuiggan, K. Autumn, J. Israelachvili, Adhesion and friction in gecko toe attachment and detachment, Proc. Natl. Acad. Sci. USA 103, 19320–19325 (2006)

    Article  Google Scholar 

  54. W.R. Hansen, K. Autumn, Evidence for self-cleaning in gecko setae, Proc. Natl. Acad. Sci. USA 102, 385–389 (2005)

    Article  Google Scholar 

  55. W.C. Hinds, Aerosol Technology (Wiley, New York, 1982)

    Google Scholar 

  56. R. Jaenicke, Atmospheric aerosol size distribution. In: Atmospheric Particles, ed. by R.M. Harrison, R. van Grieken (Wiley, New York, 1998) pp. 1–29

    Google Scholar 

  57. N.E. Stork, A comparison of the adhesive setae on the feet of lizards and arthropods, J. Nat. Hist. 17, 829–835 (1983)

    Article  Google Scholar 

  58. W. Federle, M. Riehle, A.S.G. Curtis, R.J. Full, An integrative study of insect adhesion: Mechanics of wet adhesion of pretarsal pads in ants, Integr. Comp. Biol. 42, 1100–1106 (2002)

    Article  Google Scholar 

  59. G. Hanna, W.J.P. Barnes, Adhesion and detachment of the toe pads of tree frogs, J. Exp. Biol. 155, 103–125 (1991)

    Google Scholar 

  60. W.G. Van der Kloot, Molting. In. Encyclopedia Americana, Vol. 19 (Grolier, Norwich, 1992) pp. 336–337

    Google Scholar 

  61. J.N. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic, San Diego, 1992)

    Google Scholar 

  62. J.J. Bikerman, The Science of Adhesive Joints (Academic, New York, 1961)

    Google Scholar 

  63. W.A. Zisman, Influence of constitution on adhesion, Ind. Eng. Chem. 55(10), 18–38 (1963)

    Article  Google Scholar 

  64. R. Houwink, G. Salomon, Effect of contamination on the adhesion of metallic couples in ultra high vacuum, J. Appl. Phys. 38, 1896–1904 (1967)

    Article  Google Scholar 

  65. B. Bhushan, Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, New York, 1996)

    Book  Google Scholar 

  66. B. Bhushan (Ed.), Springer Handbook of Nanotechnology, 2nd edn. (Springer, Berlin, 2007)

    Google Scholar 

  67. H.C. Hamaker, London van der Waals attraction between spherical bodies, Physica 4, 1058–1072 (1937)

    Article  Google Scholar 

  68. J.N. Israelachvili, D. Tabor, The measurement of Van der Waals dispersion forces in the range of 1.5 to 130 nm, Proc. R. Soc. A 331, 19–38 (1972)

    Article  Google Scholar 

  69. A.D. Zimon, Adhesion of Dust and Powder (Plenum, New York, 1969), transl. from Russian by M. Corn

    Google Scholar 

  70. P.L. Fan, M.J. O’Brien, Adhesion in deformable isolated capillaries, Adhes. Sci. Technol. 9A, 635 (1975)

    Article  Google Scholar 

  71. P.B.P. Phipps, D.W. Rice, Role of water in atmospheric corrosion, In. Corrosion Chemistry, ACS Symp. Ser., Vol. 89, ed. by G.R. Brubaker, P.B.P. Phipps (Am. Chem. Soc., Washington DC, 1979) pp. 235–261

    Chapter  Google Scholar 

  72. J.B. Losos, Thermal sensitivity of sprinting and clinging performance in the Tokay gecko (Gekko gecko), Asiat. Herpetol. Res. 3, 54–59 (1990)

    Google Scholar 

  73. B.W. Chui, T.W. Kenny, H.J. Mamin, B.D. Terris, D. Rugar, Independent detection of vertical and lateral forces with a sidewall-implanted dual-axis piezoresistive cantilever, Appl. Phys. Lett. 72, 1388–1390 (1998)

    Article  Google Scholar 

  74. W.C. Young, R. Budynas, Roark’s Formulas for Stress and Strain, 7th edn. (McGraw-Hill, New York, 2001)

    Google Scholar 

  75. N.J. Glassmaker, A. Jagota, C.Y. Hui, J. Kim, Design of biomimetic fibrillar interfaces, 1. Making contact, J. R. Soc. Interf. 1, 23–33 (2004)

    Article  Google Scholar 

  76. B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformation on the adhesion of particles, J. Colloid Interf. Sci. 53, 314–326 (1975)

    Article  Google Scholar 

  77. K.T. Wan, D.T. Smith, B.R. Lawn, Fracture and contact adhesion energies of mica-mica, silica-silica, and mica-silica interfaces in dry and moist atmospheres, J. Am. Ceram. Soc. 75, 667–676 (1992)

    Article  Google Scholar 

  78. B.N.J. Persson, On the mechanism of adhesion in biological systems, J. Chem. Phys. 118, 7614–7621 (2003)

    Article  Google Scholar 

  79. N.J. Glassmaker, A. Jagota, C.Y. Hui, Adhesion enhancement in a biomimetic fibrillar interface, Acta Biomater. 1, 367–375 (2005)

    Article  Google Scholar 

  80. H. Yao, H. Gao, Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko, J. Mech. Phys. Solids 54, 1120–1146 (2006)

    Article  MATH  Google Scholar 

  81. R. Spolenak, S. Gorb, E. Arzt, Adhesion design maps for bio-inspired attachment systems, Acta Biomater. 1, 5–13 (2005)

    Article  Google Scholar 

  82. G.E. Dieter, Mechanical Metallurgy (McGraw-Hill, London 1988)

    Google Scholar 

  83. M. Sitti, High aspect ratio polymer micro/nano-structure manufacturing using nanoembossing, nanomolding and directed self-assembly, Proc. IEEE/ASME Adv. Mechatron. Conf., Vol. 2 (2003) pp. 886–890

    Google Scholar 

  84. K. Autumn, A. Dittmore, D. Santos, M. Spenko, M. Cutkosky, Frictional adhesion, a new angle on gecko attachment, J. Exp. Biol. 209, 3569–3579 (2006)

    Article  Google Scholar 

  85. K.A. Daltorio, S. Gorb, A. Peressadko, A.D. Horchler, R.E. Ritzmann, R.D. Quinn, A robot that climbs walls using micro-structured polymer adhesive, Proc. 30th Annu. Meet. Adhes. Soc. (2007) pp. 329–331

    Google Scholar 

  86. B. Aksak, M.P. Murphy, M. Sitti, Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces, Proc. ICRA 2008, Pasadena (2008) pp. 3058–3063

    Google Scholar 

  87. M.R. Cutkosky, S. Kim, Design and fabrication of multi-materials structures for bio-inspired robots, Philos. Trans. R. Soc. A 367, 1799–1813 (2009)

    Article  Google Scholar 

  88. W.K. Cho, I.S. Choi, Fabrication of hairy polymeric films inspired by geckos: Wetting and high adhesion properties, Adv. Func. Mater. 18, 1089–1096 (2007)

    Article  Google Scholar 

  89. A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, S.Y. Shapoval, Microfabricated adhesive mimicking gecko foot-hair, Nat. Mater. 2, 461–463 (2003)

    Article  Google Scholar 

  90. J. Davies, S. Haq, T. Hawke, J.P. Sargent, A practical approach to the development of a synthetic gecko tape, Int. J. Adhes. Adhes. 29, 380–390 (2008)

    Article  Google Scholar 

  91. B. Aksak, M.P. Murphy, M. Sitti, Adhesion of biologically inspired vertical and angled polymer microfiber arrays, Langmuir 23, 3322–3332 (2007)

    Article  Google Scholar 

  92. M.P. Murphy, B. Aksak, M. Sitti, Adhesion and anisotropic friction enhancement of angeled heterogeneous micro-fiber arrays with spherical and spatula tips, J. Adhes. Sci. Technol. 21, 1281–1296 (2007)

    Article  Google Scholar 

  93. A. del Campo, C. Greiner, I. Alvares, E. Arzt, Patterned surfaces with pillars with controlled 3-D tip geometry mimicking bioattachment devices, Adv. Mater. 19, 1973–1977 (2007)

    Article  Google Scholar 

  94. A. del Campo, C. Greiner, E. Arzt, Contact shape controls adhesion of bioinspired fibrillar surfaces, Langmuir 23, 10235–10243 (2007)

    Article  Google Scholar 

  95. S. Gorb, M. Varenberg, A. Peressadko, J. Tuma, Biomimetic mushroom-shaped fibrillar adhesive microstructures, J. R. Soc. Interface 4, 271–275 (2007)

    Article  Google Scholar 

  96. B. Bhushan, R.A. Sayer, Surface characterization and friction of a bio-inspired reversible adhesive tape, Microsyst. Technol. 13, 71–78 (2007)

    Article  Google Scholar 

  97. R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28, 988–994 (1936)

    Article  Google Scholar 

  98. Z. Burton, B. Bhushan, Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems, Nano Lett. 5, 1607–1613 (2005)

    Article  Google Scholar 

  99. B. Bhushan, Y.C. Jung, Wetting, adhesion, and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces, J. Phys. Condens. Matter 20, 22510 (2008)

    Google Scholar 

  100. M. Nosonovsky, B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces, NanoScience and Technology (Springer, Berlin, Heidelberg 2008)

    Google Scholar 

  101. E. Schäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Electrically induced structure formation and pattern transfer, Nature 403, 874–877 (2000)

    Article  Google Scholar 

  102. B. Yurdumakan, N.R. Raravikar, P.M. Ajayan, A. Dhinojwala, Synthetic gecko foot-hairs from multiwalled carbon nanotubes, Chem. Commun. 30, 3799–3801 (2005)

    Article  Google Scholar 

  103. L. Ge, S. Sethi, L. Ci, M. Ajayan, A. Dhinojwale, Carbon nanotube-based synthetic gecko tape, Proc. Natl. Acad. Sci. USA 104, 10792–10795 (2007)

    Article  Google Scholar 

  104. L. Qu, L. Dai, M. Stone, Z. Xia, Z.L. Wang, Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off, Science 322, 238–242 (2008)

    Article  Google Scholar 

  105. A. del Campo, C. Greiner, SU-8: A photoresist for high-aspect-ratio and 3-D submicron lithography, J. Micromech. Microeng. 17, R81–R95 (2007)

    Article  Google Scholar 

  106. M.T. Northen, K.L. Turner, A batch fabricated biomimetic dry adhesive, Nanotechnology 16, 1159–1166 (2005)

    Article  Google Scholar 

  107. M.T. Northen, K.L. Turner, Meso-scale adhesion testing of integrated micro- and nanoscale structures, Sens. Actuators A 130/131, 583–587 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B. (2011). Gecko Feet: Natural Hairy Attachment Systems for Smart Adhesion. In: Bhushan, B. (eds) Nanotribology and Nanomechanics II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15263-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15263-4_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15262-7

  • Online ISBN: 978-3-642-15263-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics