Skip to main content

Biological Phosphorus Cycling in Dryland Regions

  • Chapter
  • First Online:
Phosphorus in Action

Part of the book series: Soil Biology ((SOILBIOL,volume 26))

Abstract

The relatively few studies done on phosphorus (P) cycling in arid and semiarid lands (drylands) show many factors that distinguish P cycling in drylands from that in more mesic regions. In drylands, most biologically relevant P inputs and losses are from the deposition and loss of dust. Horizontal and vertical redistribution of P is an important process. P is concentrated at the soil surface and thus vulnerable to loss via erosion. High pH and CaCO3 limit P bioavailability, and low rainfall limits microbe and plant ability to free abiotically bound P via exudates, thus making it available for uptake. Many invasive plants are able to access recalcitrant P more effectively than are native plants. As P availability depends on soil moisture and temperature, climate change is expected to have large impacts on P cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts R, Bobbink R (1999) The impact of atmospheric nitrogen deposition on vegetation in terrestrial non-forest ecosystems. In: Langan S (ed) The impacts of nitrogen deposition on natural and semi-natural ecosystems. Kluwer, Dordrecht, pp 85–122

    Google Scholar 

  • Alkon PU (1999) Microhabitat to landscape impacts: crested porcupine digs in the Negev Desert highlands. J Arid Environ 41:183–202

    Google Scholar 

  • Allen EB, Allen MF (1988) Facilitation of succession by the nonmycotrophic colonizer Salsola kali (Chenopodiaceae) on a harsh site: effects of mycorrhizal fungi. Am J Bot 75:257–266

    Google Scholar 

  • Allen MF, Figueroa C, Weinbaum BS, Barlow SB, Allen EB (1996) Differential production of oxalate by mycorrhizal fungi in arid ecosystems. Biol Fertil Soils 22:287–292

    CAS  Google Scholar 

  • Augustine DJ (2003) Long-term, livestock-mediated redistribution of nitrogen and phosphorus in an East African savanna. J Appl Ecol 40:137–149

    Google Scholar 

  • Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, New York

    Google Scholar 

  • Barroso CB, Nahas E (2005) The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Appl Soil Ecol 29:73–83

    Google Scholar 

  • Barrow JR, Osuna P (2002) Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J Arid Environ 51:449–459

    Google Scholar 

  • Bashkin M, Stohlgren TJ, Otsuki Y, Lee M, Evangelista P, Belnap J (2003) Soil characteristics and plant exotic species invasions in the Grand Staircase-Escalante National Monument, Utah, USA. Appl Soil Ecol 22:67–77

    Google Scholar 

  • Baturin GN (2003) Phosphorus cycle in the ocean. Lithol Miner Resour 38:101–119

    CAS  Google Scholar 

  • Belnap J (2003a) Comparative structure of physical and biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 177–191

    Google Scholar 

  • Belnap J (2003b) Microbes and microfauna associated with biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 167–174

    Google Scholar 

  • Belnap J, Phillips SL (2001) Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion. Ecol Appl 11:1261–1275

    Google Scholar 

  • Belnap J, Sherrod SK (2009) Soil amendment effects on the exotic annual grass Bromus tectorum L. and facilitation of its growth by the native perennial grass Hilaria jamesii (Torr.) Benth. Plant Ecol 201(2):709–721

    Google Scholar 

  • Belnap J, Prasse R, Harper KT (2003a) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 281–300

    Google Scholar 

  • Belnap J, Sherrod SK, Miller ME (2003b) Effects of soil amendments on germination and emergence of downy brome (Bromus tectorum) and Hilaria jamesii. Weed Sci 51:371–378

    CAS  Google Scholar 

  • Belnap J, Büdel B, Lange OL (2003c) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 3–30

    Google Scholar 

  • Belnap J, Phillips SL, Miller ME (2004) Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia 141:306–316

    PubMed  Google Scholar 

  • Belnap J, Phillips SL, Sherrod S, Moldenke A (2005) Soil biota can change after exotic plant invasion: does this affect ecosystem processes? Ecology 86:3007–3017

    Google Scholar 

  • Belnap J, Phillips SL, Troxler T (2006) Soil lichen and moss cover and species richness can be highly dynamic: the effects of invasion by the annual exotic grass Bromus tectorum and the effects of climate on biological soil crusts. Appl Soil Ecol 32:63–76

    Google Scholar 

  • Bestlemeyer BT, Brown JR, Havstad KM, Fredrickson EL (2006) A holistic view of an arid ecosystem: a synthesis of research an dits applications. In: Havstad KM, Huenneke LF, Schlesinger WH (eds) Structure and function of a Chihuahuan desert ecosystem: the Jornada Basin long-term ecological research site. Oxford University Press, Oxford, pp 354–368

    Google Scholar 

  • Billings WD (1950) Vegetation and plant growth as affected by chemically altered rocks in the western Great Basin. Ecology 31:62–74

    Google Scholar 

  • Blackwell MSA, Brookes PC, de la Fuente-Martinez N, Murray PJ, Snars KE, Williams JK, Haygarth PM (2009) Effects of soil drying and rate of re-wetting on concentrations and forms of phosphorus in leachate. Biol Fertil Soils 45:635–643

    Google Scholar 

  • Blank R, Sforza R (2007) Plant-soil relationships of the invasive annual grass Taeniatherum caput-medusae: a reciprocal transplant experiment. Plant Soil 298:7–19

    CAS  Google Scholar 

  • Blank R, Young JA (2002) Influence of the exotic invasive crucifer, Lepidium latifolium, on soil properties and elemental cycling. Soil Sci 167:821–829

    CAS  Google Scholar 

  • Bolton H Jr, Smith JL, Link SO (1993) Soil microbial biomass and activity of a disturbed and undisturbed shrub-steppe ecosystem. Soil Biol Biochem 25:545–552

    Google Scholar 

  • Bornyasz MA, Graham RC, Allen MF (2005) Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix resources to plants. Geoderma 126:141–160

    Google Scholar 

  • Boulton AM, Jaffee BA, Scow KM (2003) Effects of a common harvester ant (Messor andrei) on richness and abundance of soil biota. Appl Soil Ecol 23:257–265

    Google Scholar 

  • Bowker MA, Belnap J, Davidson DW, Goldstein H (2006) Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. J Appl Ecol 43:152–163

    Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Physiological responses to moderate water stress. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Springer, Berlin, pp 263–324

    Google Scholar 

  • Breecker DO, Sharp ZD, McFadden LD (2009) Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geol Soc Am Bull 121:630–640

    CAS  Google Scholar 

  • Büdel B (2000) Symbioses (living one inside the other). In: Seckbach J (ed) Journey to diverse microbial worlds: adaptation to exotic environments. Kluwer, Dordrecht, The Netherlands, pp 257–266

    Google Scholar 

  • Butterly CR, Bünemann EK, McNeill AM, Baldock JA, Marschner P (2009) Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem 41:1406–1416

    CAS  Google Scholar 

  • Caldwell MM, Richards JH (1986) Competing root systems: morphology and models of absorption. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 251–273

    Google Scholar 

  • Callaway RM (2007) Positive interactions and interdependence in plant communities. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    CAS  PubMed  Google Scholar 

  • Cannon JP, Allen EB, Allen MF, Dudley LM, Jurinak JJ (1995) The effects of oxalates produced by Salsola tragus on the phosphorus nutrition of Stipa pulchra. Oecologia 102:265–272

    Google Scholar 

  • Casper BB, Jackson RB (1997) Plant competition underground. Annu Rev Ecol Syst 28:545–570

    Google Scholar 

  • Castenholz RW, Garcia-Pichel F (2000) Cyanobacterial responses to UV-radiation. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, The Netherlands, pp 591–611

    Google Scholar 

  • Chapuis-Lardy L, Le Bayon R-C, Brossard M, López-Hernández D, Blanchart E (2011) Role of soil macrofauna in phosphorus cycling. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_8

  • Charley JL (1977) Mineral cycling in rangeland ecosystems. In: Sosebee RE (ed) Rangeland plant physiology. Society of Range Management, Denver, CO, pp 215–256

    Google Scholar 

  • Charley JL, Cowling SW (1968) Changes in soil nutrient status resulting from overgrazing and their consequences in plant communities of semi-arid areas. Proc Ecol Soc Aust 3:28–38

    Google Scholar 

  • Clarkson DT (1985) Factors affecting mineral nutrient acquisition by plants. Annu Rev Plant Physiol 26:77–115

    Google Scholar 

  • Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH (2008) Pulse dynamics and microbial processes in aridland ecosystems. J Ecol 96:413–420

    Google Scholar 

  • Cook CW, Gates DH (1960) Effects of site and season on oxalate content of halogeton. J Range Manage 13:97–101

    CAS  Google Scholar 

  • Darby BJ, Neher DA, Belnap J (2007) Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts. Appl Soil Ecol 35:203–212

    Google Scholar 

  • de Caire GZ, de Cano MS, Palma RM, de Mulé CZ (2000) Changes in soil enzyme activities following additions of cyanobacterial biomass and exopolysaccharide. Soil Biol Biochem 32:1985–1987

    Google Scholar 

  • DeLucia EH, Schlesinger WH, Billings WD (1989) Edaphic limitations to growth and photosynthesis in Sierran and Great Basin vegetation. Oecologia 78:184–190

    Google Scholar 

  • DeLucia EH, Callaway RM, Thomas EM, Schlesinger WH (1997) Mechanisms of phosphorus acquisition for ponderosa pine seedlings under high CO2 and temperature. Ann Bot 79:111–120

    CAS  Google Scholar 

  • Dornbush ME (2007) Grasses, litter, and their interaction affect microbial biomass and soil enzyme activity. Soil Biol Biochem 39:2241–2249

    CAS  Google Scholar 

  • Drake M, Steckel JE (1995) Solubilization of soil and rock phosphate as related to root cation exchange capacity. Proc Soil Sci Soc Am 19:449–450

    Google Scholar 

  • Duda JJ, Freeman DC, Emlen JM, Belnap J, Kitchen SG, Zak JC, Sobek E, Tracy M, Montante J (2003) Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus. Biol Fertil Soils 38:72–77

    CAS  Google Scholar 

  • Eldridge DJ, Rath D (2002) Hip holes: Kangaroo (Macropus spp.) resting sites modify the physical and chemical environment of woodland soils. Aust Ecol 27:527–536

    Google Scholar 

  • Epstein E (1961) The essential role of calcium in selective cation transport by plant cells. Plant Physiol 36:437–444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Estiarte M, Penuelas J, Sardans J, Emmett BA, Sowerby A, Beier C, Schmidt IK, Tietema A, Van Meeteren MJM, Kovacs Lang E, Mathe P, De Angelis P, De Dato G (2008) Root-surface phosphatase activity in shrublands across a European gradient: effects of warming. J Environ Biol 29:25–29

    CAS  PubMed  Google Scholar 

  • Facelli JM, Brock DJ (2000) Patch dynamics in arid lands: localized effects of Acacia papyrocarpa on soils and vegetation of open woodlands of south Australia. Ecography 23:479–491

    Google Scholar 

  • Fenn ME, Baron JS, Allen EB, Rueth HM, Nydick KR, Geiser L, Bowman WD, Sickman JO, Meixner T, Johnson DW, Neitlich P (2003) Ecological effects of nitrogen deposition in the Western United States. Bioscience 53:404–420

    Google Scholar 

  • Field JP, Belnap J, Breshears DD, Neff JC, Okin GS, Whicker JJ, Painter TH, Ravi S, Reheis MC, Reynolds RL (2009) The ecology of dust. Front Ecol Environ. doi:10.1890/090050

  • Fogg GE (1966) The extracellular products of algae. Oceanogr Mar Biol 4:195–212

    CAS  Google Scholar 

  • Fox TR, Comerford NB (1990) Low-molecular-weight organic acids in selected forest soils of the southeastern USA. Soil Sci Soc Am J 54:1139–1144

    CAS  Google Scholar 

  • Gadd GM, Watkinson SC, Dyer PS (2007) Fungi in the environment. Cambridge University Press, New York

    Google Scholar 

  • Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782

    Google Scholar 

  • Garkaklis MJ, Bradley JS, Wooller RD (2004) Digging and soil turnover by a mycophagous marsupial. J Arid Environ 56:569–578

    Google Scholar 

  • Geesey G, Jang L (1990) Extracellular polymers for metal binding. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 223–247

    Google Scholar 

  • George TS, Fransson A-M, Hammond JP, White PJ (2011) Phosphorus nutrition: rhizosphere processes, plant response and adaptations. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_10

  • Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085

    CAS  Google Scholar 

  • Greene B, Darnall DW (1990) Microbial oxygenic photoautotrophs (cyanobacteria and algae) for metal-ion binding. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 277–302

    Google Scholar 

  • Gundale MJ, Sutherland S, DeLuca TH (2008) Fire, native species, and soil resource interactions influence the spatio-temporal invasion pattern of Bromus tectorum. Ecography 31:201–210

    Google Scholar 

  • Hansen ES (1999) Epilithic lichens on iron- and copper-containing crusts at Qeqertarsuaq, Central West Greenland. Graphis Scripta 10:7–12

    Google Scholar 

  • Harner RF, Harper KT (1973) Mineral composition of grassland species of the eastern great basin in relation to stand productivity. Can J Bot 51:2037–2046

    CAS  Google Scholar 

  • Harris GA (1967) Some competitive relationships between Agropyron spicatum and Bromus tectorum. Ecol Monogr 37:89–111

    Google Scholar 

  • Harvey SJ, Nowierski RM (1989) Spotted knapweed: allelopathy or nutrient depletion. In: Fay PK, Lacey JR (eds) Knapweed symposium. Plant and Soil Science Department and Extension Service, Montana State University, Bozeman, p 118

    Google Scholar 

  • Herron GJ, Sheley RL, Maxwell BD, Jacobsen JS (2001) Influence of nutrient availability on the interaction between spotted knapweed and bluebunch wheatgrass. Restor Ecol 9:326–331

    Google Scholar 

  • Hiernaux P, Bielders CL, Valentin C, Bationo A, Fernandez-Rivera S (1999) Effects of livestock grazing on physical and chemical properties of sandy soils in Sahelian rangelands. J Arid Environ 41:231–245

    Google Scholar 

  • Hilder EJ, Mottershead BE (1963) The redistribution of plant nutrients through free-grazing sheep. Aust J Sci 26:88–89

    CAS  Google Scholar 

  • Holford ICR, Chater M, Mattingly GEG (1990) Effects of decalcification on the phosphate sorption characteristics of eight calcareous soils. Aust J Soil Res 28:919–928

    CAS  Google Scholar 

  • Hooper DU, Johnson LC (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293

    CAS  Google Scholar 

  • Horner HT, Wagner BL (1995) Calcium oxalate formation in higher plants. In: Khan SR (ed) Calcium oxalate in biological systems. CRC, Boca Raton, FL, pp 53–72

    Google Scholar 

  • James JJ, Tiller RL, Richards JH (2005) Multiple resources limit plant growth and function in a saline-alkaline desert community. J Ecol 93:113–126

    CAS  Google Scholar 

  • Jansa J, Finlay R, Wallander H, Smith FA, Smith SE (2011) Role of mycorrhizal symbioses in phosphorus cycling. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_6

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Google Scholar 

  • Jobbágy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85:2369–2379

    Google Scholar 

  • Jonasson S, Chapin FS III (1991) Seasonal uptake and allocation of phosphorus in Eriophorum vaginatum L. measured by labelling with 32P. New Phytol 118:349–357

    CAS  Google Scholar 

  • Jones DL, Oburger E (2011) Solubilization of phosphorus by soil microorganisms. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_7

  • Jones D, Wilson MJ (1985) Chemical activity of lichens on mineral surfaces – a review. Int Biodeter 21:99–104

    CAS  Google Scholar 

  • Jungk A, Claassen N (1997) Ion diffusion in the soil-root system. Adv Agron 61:53–110

    CAS  Google Scholar 

  • Jurinak JJ, Griffin RA (1972) Factors affecting the movement and distribution of anions in desert soils. US/IBP desert biome research memorandum 72-38. Utah State University, Logan, UT

    Google Scholar 

  • Jurinak JJ, Dudley LM, Allen MF, Knight WG (1986) The role of calcium oxalate in the availability of phosphorus in soils of semiarid regions: a thermodynamic study. Soil Sci 142:255–261

    CAS  Google Scholar 

  • Kieft TL, Soroker E, Firestone MK (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126

    Google Scholar 

  • Killingbeck KT, Whitford WG (1996) High foliar nitrogen in desert shrubs: an important ecosystem trait or defective desert doctrine? Ecology 77:1728–1737

    Google Scholar 

  • Killingbeck K, Whitford W (2001) Nutrient resorption in shrubs growing by design, and by default in Chihuahuan Desert arroyos. Oecologia 128:351–359

    Google Scholar 

  • Kleiner EF, Harper KT (1977) Occurrence of four major perennial grasses in relation to edaphic factors in a pristine community. J Range Manage 30:286–289

    Google Scholar 

  • Klemmedson JO, Tiedemann AR (1986) Long-term effects of mesquite removal on soil characteristics: II. Nutrient availability. Soil Sci Soc Am J 50:476–480

    CAS  Google Scholar 

  • Klemmedson JO, Tiedemann AR (1998). Lithosequence of soils and associated vegetation on subalpine range of the Wasatch Plateau, Utah. USDA Forest Service, Pacific Northwest Research Station, Portland, Oregon, pp 1–16

    Google Scholar 

  • Krauskopf KB, Bird DK (1995) Introduction to geochemistry. McGraw Hill, New York

    Google Scholar 

  • Lajtha K (1987) Nutrient reabsorption efficiency and the response to phosphorus fertilization in the desert shrub Larrea tridentata (DC.) Cov. Biogeochemistry 4:265–276

    Google Scholar 

  • Lajtha K, Harrison AF (1995) Strategies of phosphorus acquisition and conservation by plant species and communities. In: Tiessen H (ed) Phosphorus in the global environment. Wiley, Chichester, UK, pp 140–147

    Google Scholar 

  • Lajtha K, Schlesinger WH (1986) Plant response to variations in nitrogen availability in a desert shrubland community. Biogeochemistry 2:29–37

    CAS  Google Scholar 

  • Lajtha K, Schlesinger WH (1988) The biogeochemistry of phosphorus cycling and phosphorus availability along a desert soil chronosequence. Ecology 69:24–39

    CAS  Google Scholar 

  • Lange W (1974) Chelating agents and blue-green algae. Can J Microbiol 20:1311–1321

    CAS  Google Scholar 

  • Lee KE (1977) Physical effects of herbivores on arid and semi-arid rangeland ecosystems. The impact of herbivores on arid and semi-arid rangelands. In: Proceedings 2nd US/Aus Rangeland Panel, Adelaide, 1972. Australian Rangeland Society, Perth, West Australia

    Google Scholar 

  • Lei SA, Walker LR (1997) Biotic and abiotic factors influencing the distribution of Coleogyne communities in southern Nevada. Great Basin Nat 57:163–171

    Google Scholar 

  • LeJeune KD, Seastedt TR (2001) Centaurea species: the forb that won the West. Conserv Biol 15:1568–1574

    Google Scholar 

  • LeJeune KD, Suding KN, Seastedt TR (2006) Nutrient availability does not explain invasion and dominance of a mixed grass prairie by the exotic forb Centaurea diffusa Lam. Appl Soil Ecol 32:98–110

    Google Scholar 

  • Lewin RA (1956) Extracellular polysaccharides of green algae. Can J Microbiol 2:665–672

    CAS  Google Scholar 

  • Li XY, Liu LY (2003) Effect of gravel mulch on aeolian dust accumulation in the semiarid region of northwest China. Soil Tillage Res 70:73–81

    Google Scholar 

  • Li X, Sarah P (2003) Enzyme activities along a climatic transect in the Judean Desert. CATENA 53:349–363

    CAS  Google Scholar 

  • Lindahl BD, Finlay RD, Cairney JWG (2005) Enzymatic activities of mycelia in mycorrhizal fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, vol 23. Taylor & Francis, Boca Raton, FL, pp 331–348

    Google Scholar 

  • Lobry de Bruyn LA, Conacher AJ (1990) The role of termites and ants in soil modification: a review. Aust J Soil Res 28:55–93

    Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Google Scholar 

  • Lynch JP, Deikman J (1998) Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic and ecosystem processes. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Lynch JP, Ho MD (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269:45–56

    CAS  Google Scholar 

  • Ma B, Zhou ZY, Zhang LL, Gao WX (2007) The principal component analysis of soil and population growth status of Artemisia sphaerocephala in arid region of Alex Desert. Xibei Zhiwu Xuebao 27:995–999

    CAS  Google Scholar 

  • Ma B, Zhou ZY, Zhang CP, Zhang G, Hu YJ (2009) Inorganic phosphorus fractions in the rhizosphere of xerophytic shrubs in the Alxa Desert. J Arid Environ 73:55–61

    Google Scholar 

  • MacKay WP (1991) The role of ants and termites in desert communities. In: Polis G (ed) The ecology of desert communities. University of Arizona Press, Tuscon, pp 113–150

    Google Scholar 

  • MacMahon JA, Mull JF, Crist TO (2000) Harvester ants (Pogonomyrmex SPP.): their community and ecosystem influences. Annu Rev Ecol Syst 31:265–291

    Google Scholar 

  • Magid J, Nielsen NE (1992) Seasonal variation in organic and inorganic phosphorus fractions of temperate-climate sandy soils. Plant Soil 144:155–165

    CAS  Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189

    Google Scholar 

  • Marschner H (1995) Ion uptake mechanisms of individual cells and roots: short-distance transport. In: Marschner H (ed) Mineral nutrition of higher plants. Academic, San Diego, pp 6–78

    Google Scholar 

  • McClaran MP, Van Devender TR (1995) The desert grassland. University of Arizona Press, Tucson

    Google Scholar 

  • McCulley RL, Jobbagy EG, Pockman WT, Jackson RB (2004) Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. Oecologia 141:620–628

    CAS  PubMed  Google Scholar 

  • McLean RJC, Beveridge TJ (1990) Metal-binding capacity of bacterial surfaces and their ability to form mineralized aggregates. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 185–222

    Google Scholar 

  • Midgley GF, van der Heyden F (1999) Form and function in perennial plants. In: Dean WRJ, Milton SJ (eds) The Karoo: ecological patterns and processes. Cambridge University Press, Cambridge, pp 91–106

    Google Scholar 

  • Miller ME, Belnap J, Beatty SW, Webb BL (2006a) Effects of water additions, chemical amendments, and plants on in situ measures of nutrient bioavailability in calcareous soils of southeastern Utah, USA. Plant Soil 288:19–29

    CAS  Google Scholar 

  • Miller ME, Belnap J, Beatty S, Reynolds RL (2006b) Performance of Bromus tectorum L. in relation to soil properties, water additions, and chemical amendments in calcareous soils of southeastern Utah, USA. Plant Soil 288:1–18

    CAS  Google Scholar 

  • Monger HC (2006) Soil development in the Jornada Basin. In: Havstad KM, Huenneke LF, Schlesinger WH (eds) Structure and function of a Chihuahuan Desert ecosystem: the Jornada Basin long-term ecological research site. Oxford University Press, Oxford, pp 81–106

    Google Scholar 

  • Nadeau J, Qualls R, Nowak R, Blank R (2007) The potential bioavailability of organic C, N, and P through enzyme hydrolysis in soils of the Mojave Desert. Biogeochemistry 82:305–320

    CAS  Google Scholar 

  • Naiman RJ, Braack L, Grant R, Kemp AC, Du Toit JT, Venter FJ (2003) Interactions between species and ecosystem characteristics. In: Du Toit JT, Rogers KH, Biggs HC (eds) The Kruger experience: ecology and management of savanna heterogeneity. Island, Washington, pp 221–241

    Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg, Berlin. doi: 10.1007/978-3-642-15271-9_9

  • Nash TH III (1996) Lichen biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Neff JC, Reynolds R, Belnap J, Lamothe P (2005) Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol Appl 15:87–95

    Google Scholar 

  • Neff JC, Ballantyne AP, Farmer GL, Mahowald NM, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynolds RL (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1:189–195

    CAS  Google Scholar 

  • Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Glob Biogeochem Cycles 18:GB2005

    Google Scholar 

  • Palmer AR, Novellie PA, Lloyd JW (1999) Community patterns and dynamics. In: Dean WRJ, Milton SJ (eds) The Karoo: ecological patterns and processes. Cambridge University Press, Cambridge, pp 208–222

    Google Scholar 

  • Parker KC (1995) Effects of complex geomorphic history on soil and vegetation patterns on arid alluvial fans. J Arid Environ 30:19–39

    Google Scholar 

  • Phuyal M, Artz R, Sheppard L, Leith I, Johnson D (2008) Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an ombrotrophic bog. Plant Ecol 196:111–121

    Google Scholar 

  • Quiquampoix H, Mousain D (2005) Enzymatic hydrolysis of organic phosphorus. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Cambridge, MA, pp 89–112

    Google Scholar 

  • Radin JW, Eidenbock MP (1984) Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. Plant Physiol 75:372–377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reed SC, Seastedt TR, Mann CM, Suding KN, Townsend AR, Cherwin KL (2007) Phosphorus fertilization stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairie. Appl Soil Ecol 36:238–242

    Google Scholar 

  • Reheis MC, Kihl R (1995) Dust deposition in southern Nevada and California, 1984-1989 – Relations to climate, source area, and source lithology. J Geophys Res 100:8893–8918

    CAS  Google Scholar 

  • Reheis MC, Budahn JR, Lamothe PJ (1999) Elemental analyses of modern dust in southern Nevada and California. USGS OFR 99-0531

    Google Scholar 

  • Reynolds R, Belnap J, Reheis M, Lamothe P, Luiszer F (2001) Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proc Natl Acad Sci USA 98:7123–7127

    CAS  PubMed  Google Scholar 

  • Reynolds R, Neff JC, Reheis M, Lamothe P (2006a) Atmospheric dust in modern soil on aeolian sandstone, Colorado Plateau (USA): Variation with landscape position and contribution to potential plant nutrients. Geoderma 130:108–123

    CAS  Google Scholar 

  • Reynolds RL, Reheis M, Yount J, Lamothe P (2006b) Composition of aeolian dust in natural traps on isolated surfaces of the central Mojave Desert – insights to mixing, sources, and nutrient inputs. J Arid Environ 66:42–61

    Google Scholar 

  • Reynolds RL, Reheis MC, Neff JC, Goldstein H, Yount J (2006c) Late Quaternary eolian dust in surficial deposits of a Colorado Plateau grassland: controls on distribution and ecologic effects. CATENA 66:251–266

    Google Scholar 

  • Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biol Fertil Soils 18:209–215

    Google Scholar 

  • Santos PF, DePree E, Whitford WG (1978) Spatial distribution of litter and microarthropods in a Chihuahuan desert ecosystem. J Arid Environ 1:41–48

    Google Scholar 

  • Sardans J, Peñuelas J, Estiarte M (2006) Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant Soil 289:227–238

    CAS  Google Scholar 

  • Sardans J, Peñuelas J, Ogaya R (2008) Experimental drought reduced acid and alkaline phosphatase activity and increased organic extractable P in soil in a Quercus ilex Mediterranean forest. Eur J Soil Biol 44:509–520

    CAS  Google Scholar 

  • Schelske CL, Hooper FF, Haertl EJ (1962) Responses of a marl lake to chelated iron and fertilizer. Ecology 43:646–653

    CAS  Google Scholar 

  • Schenk HJ, Callaway RM, Mahall BE (1999) Spatial root segregation: are roots territorial? Adv Ecol Res 28:145–180

    CAS  Google Scholar 

  • Schlesinger WH, DeLucia EH, Billings WD (1989) Nutrient-use efficiency of woody plants on contrasting soils in the western Great Basin, Nevada. Ecology 70:105–113

    Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1048

    CAS  PubMed  Google Scholar 

  • Scholes RJ (1990) The influence of soil fertility on the ecology of Southern African dry savannas. J Biogeogr 17:415–419

    Google Scholar 

  • Scholes RJ, Bond WJ, Eckhardt HC (2003) Vegetation dynamics in the Kruger ecosystem. In: Du Toit JT, Rogers KH, Biggs HC (eds) The Kruger experience: ecology and management of savanna heterogeneity. Island, Washington, pp 242–262

    Google Scholar 

  • Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220

    PubMed  Google Scholar 

  • Sinsabaugh RS (1994) Enzymic analysis of microbial pattern and process. Biol Fertil Soils 17:69–74

    CAS  Google Scholar 

  • Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264

    PubMed  Google Scholar 

  • Smith SD, Nowak RS (1990) Ecophysiology of plants in the intermountain lowlands. In: Osmond CB, Pitelka LF, Hidy GM (eds) Plant biology of the basin and range. Springer, New York, pp 179–241

    Google Scholar 

  • Stursova M, Crenshaw CL, Sinsabaugh RL (2006) Microbial responses to long-term N deposition in a semiarid grassland. Microb Ecol 51:90–98

    PubMed  Google Scholar 

  • Suding KN, LeJeune KD, Seastedt TR (2004) Competitive impacts and responses of an invasive weed: dependencies on nitrogen and phosphorus availability. Oecologia 141:526–535

    PubMed  Google Scholar 

  • Thorpe AS, Archer V, DeLuca TH (2006) The invasive forb, Centaurea maculosa, increases phosphorus availability in Montana grasslands. Appl Soil Ecol 32:118–122

    Google Scholar 

  • Tiessen H, Stewart JWB, Cole CV (1984) Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Sci Soc Am J 48:853–858

    CAS  Google Scholar 

  • Turner BL, Haygarth PM (2001) Biogeochemistry: phosphorus solubilization in rewetted soils. Nature 411:258–258

    CAS  PubMed  Google Scholar 

  • Turner BL, Cade-Menun BJ, Westermann DT (2003a) Organic phosphorus composition and potential bioavailability in semi-arid arable soils of the western United States. Soil Sci Soc Am J 67:1168–1179

    CAS  Google Scholar 

  • Turner BL, Baxter R, Ellwood NTW, Whitton BA (2003b) Seasonal phosphatase activities of mosses from Upper Teesdale northern England. J Bryol 25:189–200

    Google Scholar 

  • Turner BL, Driessen JP, Haygarth PM, McKelvie ID (2003c) Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils. Soil Biol Biochem 35:187–189

    CAS  Google Scholar 

  • Van Breemen N, Finlay RD, Lundström US, Jongmans AG, Giesler R, Melderud P-A (2000) Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry 49:53–67

    Google Scholar 

  • Venter FJ, Scholes RJ, Eckhardt HC (2003) The abiotic template and its associated vegetation pattern. In: Du Toit JT, Rogers KH, Biggs HC (eds) The Kruger experience: ecology and management of savanna heterogeneity. Island, Washington, pp 83–129

    Google Scholar 

  • Verboom WH, Pate JS (2006) Bioengineering of soil profiles in semiarid ecosystems: the ‘phytotarium’ concept. Plant Soil 289:71–102

    CAS  Google Scholar 

  • Verrecchia E, Yair A, Kidron GJ, Verrecchia K (1995) Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils, north-western Negev Desert, Israel. J Arid Environ 29:427–437

    Google Scholar 

  • von Wandruszka R (2006) Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochem Trans 7:6

    Google Scholar 

  • Wagner D (1997) Harvester ant nests, soil biota and soil chemistry. Oecologia 112:232–236

    Google Scholar 

  • Walbridge MR (1991) Phosphorus availability in acid organic soils of the lower North Carolina coastal plain. Ecology 72:2083–2100

    Google Scholar 

  • West N, Griffin R, Jurinak J (1984) Comparison of phosphorus distribution and cycling between adjacent native semidesert shrub and cultivated grass-dominated ecosystems. Plant Soil 81:151–164

    CAS  Google Scholar 

  • White CS, Moore DI, Craig JA (2004) Regional-scale drought increases potential soil fertility in semiarid grasslands. Biol Fertil Soils 40:73–78

    Google Scholar 

  • Whitford WG (1999) Comparison of ecosystem processes in the Nama-karoo and other deserts. In: Deand WRJ, Milton SJ (eds) The Karoo: ecological patterns and processes. Cambridge University Press, Cambridge, pp 291–313

    Google Scholar 

  • Whitford WG (2002) Ecology of desert systems. Academic, San Diego

    Google Scholar 

  • Whitford WG, Bestlemeyer BT (2006) Chihuahuan desert fauna: effects on ecosystem properties and processes. In: Havstad KM, Huenneke LF, Schlesinger WH (eds) Structure and function of a Chihuahuan Desert ecosystem: the Jornada Basin long-term ecological research site. Oxford University Press, Oxford, pp 247–265

    Google Scholar 

  • Whitton BA, Al-Shehri AM, Ellwood NTW, Turner BL (2005) Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Cambridge, MA, pp 205–241

    Google Scholar 

  • Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 245–292

    Google Scholar 

  • Woodmansee RG (1978) Additions and losses of nitrogen in grassland ecosystems. Bioscience 28:448–453

    Google Scholar 

  • Wright RD, Mooney HA (1965) Substrate-oriented distribution of bristlecone pine in the White Mountains of California. Am Midl Nat 73:257–284

    Google Scholar 

  • Yoder CK, Nowak RS (2000) Phosphorus acquisition by Bromus madritensis ssp. rubens from soil interspaces shared with Mojave Desert shrubs. Funct Ecol 14:685–692

    Google Scholar 

  • Zhang F, Li L (2003) Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 248:305–312

    CAS  Google Scholar 

  • Zou X, Binkley D, Caldwell BA (1995) Effects of dinitrogen-fixing trees on phosphorus biogeochemical cycling in two experimental forests. Soil Sci Soc Am J 59:1452–1458

    CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to Sue Phillips and many technicians for data collection and analysis; Robert Sanford for providing data; Mark Miller for helpful comments on the manuscript; and Kymm Herring, Christy Parry, and Jeff Martin for editing and graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne Belnap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Belnap, J. (2011). Biological Phosphorus Cycling in Dryland Regions. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Action. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_15

Download citation

Publish with us

Policies and ethics