Skip to main content

Other Ultrasonic Motors

  • Chapter
Ultrasonic Motors

Abstract

There are many types of motors based on the piezoelectric effect (also called piezoelectric motors). Besides those discussed in previous chapters, there are many other new types being studied, including a non-contact type ultrasonic motor, a piezoelectric motor using clutch, a linear surface acoustic wave motor, a vacuum type ultrasonic motor, an impact type ultrasonic motor and so on. Since these types are still in the process of research and development, and many problems are not clear, the non-contact type US and linear surface acoustic wave motor are mainly discussed here. For further studying of remaining types, interested readers can consult Refs. [1]–[4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chunsheng Zhao. Ultrasonic motor techniques for 21st century. Engineering Science, 2002, 4(2): 86–91. (in Chinese)

    Google Scholar 

  2. Cunyue Lu, Chunsheng Zhao. New development of piezoelectric motor with coupling mechanism. China Mechanical Engineering, 2003, 14(7): 626–629. (in Chinese)

    Google Scholar 

  3. T Morita, T Niino, H Asama. Rotational feedthrough using ultrasonic motor for high vacuum condition. Vacuum, 2002, 65:85–90.

    Article  Google Scholar 

  4. K Asai, M K kurosawa, T Higuchi. Surface acoustic wave motor usin energy circulation driving method. IEEE Proceedings of Ultrasonics Symposium, 2001,1: 525–529.

    Google Scholar 

  5. K Nakamura, T Ito, M Kurosawa. A trial construction of an ultrasonic motor with fluid coupling. Jpn. J. Appl. Phys., 1990, 29(1): 160–161.

    Article  Google Scholar 

  6. S Hirose, Y Yamayoshi, H Ono. A small non-contact ultrasonic motor. IEEE Proceedings of Ultrasonics Symposium, 1993,1: 453–456.

    Google Scholar 

  7. Y Yamayoshi, S Hirose. Ultrasonic motor not using mechanical friction force. International Journal of Applied Electromagnetics in Materials, 1992, 3: 179–182.

    Google Scholar 

  8. H Hanada, H Iida, K Nakamura. Radiation piezoelectric driving ultrasonic motor for wing of end feeder. Winter in Heisei 3, Nion Proceeding, 1991, 2-4-3: 937–938.

    Google Scholar 

  9. Junhui Hu, Nakamura K. Characteristics of a noncontact ultrasonic motor using acoustic levitation. IEEE Ultrasonic Symposium, 1996, 1: 373–376.

    Google Scholar 

  10. Junhui Hu. Research on Non-contact Driving High Speed Ultrasonic Motor. Dissertation for the Degree of Doctor of Philosophy. Tokyo: Tokyo Institute of Technology, 1997.

    Google Scholar 

  11. Jingquan Liu, Boda Wu, Zhigang Yang, et al. A new type of circular cylindrical non-contact ultrasonic motor. Acta Acustica, 2001, 3(2): 113–116. (in Chinese)

    Google Scholar 

  12. Changliang Xia, Junhui Hu, Tingna Shi, et al. Study on theory and experiment of non-contact type ultrasonic motor with fluid medium. Proceedings of the CSEE, 2001, 21(8): 64–67. (in Chinese)

    Google Scholar 

  13. B Chu, R E Apfel. Acoustic radiation pressure produced by a beam of sound. Journal of the Acoustical Society of America, 1982, 72(6): 1673–1987.

    Article  Google Scholar 

  14. S Ueha, Y Hashimoto, Y Koike. Non-contact transportation using near-field acoustic levitation. Ultrasonics, 2000,38:26–32.

    Article  Google Scholar 

  15. W L Nyborg. Acoustic streaming near a boundary. Journal of the Acoustical Society of America, 1958, 30(4): 459–467.

    Article  MathSciNet  Google Scholar 

  16. C P Lee, T G Wang. Near-boundary screaming around a small sphere due to two orthogonal streaming waves. Journal of the Acoustical Society of America, 1989, 85(3): 1081–1088.

    Article  Google Scholar 

  17. Ye Ji. Research on Non-contact Type Ultrasonic Motor. Dissertation for the Degree of Doctor of Philosophy. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006. (in Chinese)

    Google Scholar 

  18. Chunsheng Zhao, Ye Ji. Cylinder type non-contact ultrasonic motor. Chinese Invention Patent, CN2004100701. X, 2004-11. (in Chinese)

    Google Scholar 

  19. Chunsheng Zhao, Ye Ji. Disk type non-contact ultrasonic motor. Chinese Invention Patent, CN2004100702. 4, 2004-11. (in Chinese)

    Google Scholar 

  20. Ye Ji, Chuiisheng Zhao. Modal shape measurement of cylinder stator in non-contact ultrasonic motor. Journal of Vibration, Measurement & Diagnosis, 2005, 25(1): 1–3.

    Google Scholar 

  21. Ye Ji, Chunsheng Zhao. Cylinder type non-contact ultrasonic motor. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(6): 690–693. (in Chinese)

    Google Scholar 

  22. Ye Ji, Chunsheng Zhao. A new type non-contact ultrasonic motor with high revolution speed. Piezoelectrics & Acoustooptics, 2006 28(5): 527–529. (in Chinese)

    Google Scholar 

  23. L Rayleigh. On wave propagation along the plane surface of an elastic solid. Proc. London. Math. Soc., 1985, 17: 4–11.

    Article  Google Scholar 

  24. Changkun Xu. Surface Acoustic Wave Apparatus and Its Application. Beijing: Science Press, 1984. (in Chinese)

    Google Scholar 

  25. M K Kurosawa. State-of-the-art surface acoustic wave linear motor and its future applications. Ultrasonics, 2000, 38(3): 15–19.

    Article  Google Scholar 

  26. M Takasaki, M K Kurosawa, T Higuchi. Optimum contact conditions for miniaturized surface acoustic wave linear motor. Ultrasonics, 2000, 38(3): 51–53.

    Article  Google Scholar 

  27. P Helina, V Sadaune, C Druon. Theoretical and experimental study of linear motors using surface acoustic wave. Sensors and Actuators A: Physics, 1998, 70(10): 67–74.

    Article  Google Scholar 

  28. T Shigematsu, M K Kurosawa, K Asai. Nanometer stepping drives of surface acoustic wave motor. Ultrasonics, 2003, 50(4): 376–385.

    Google Scholar 

  29. R M Moroney, R M White, R T Howe. Ultrasonic micromotor. IEEE Ultrasonics Symposium, 1989,2: 745–748.

    Article  Google Scholar 

  30. M K Kurosawa, M Takahashi, T Higuchi. Ultrasonic linear motor using surface acoustic waves. IEEE Transactions on Ultrasonics, Ferroelectric s and Frequency Control, 1996, 43(5): 901–906.

    Article  Google Scholar 

  31. M K Kurosawa, M Chiba, T Higuchi. Evaluation of a surface acoustic wave motor with a multi-contact-point slider. Smart Mater. Struct., 1998, 7: 305–311.

    Article  Google Scholar 

  32. A Sano, Y Matsui, S Shiokawa. A new manipulator based on surface acoustic wave streaming. IEEE Proceedings of Ultrasonics Symposium, 1997,1: 467–470.

    Google Scholar 

  33. http://www.shef.ac.uk/eee/resreport/full/semi/semil9. html,2006-03-21.

    Google Scholar 

  34. P J Feenstra, P C Breedveld. Modelling and experimental validation of a linear surface acoustic wave motor prototype. 8th Mechatronics Forum International Conference. Netherlands: Drebbel Institute for Mechatronics, University of Twente, 2002: 231–240.

    Google Scholar 

  35. Improved multiple-DOF SAW piezoelectric motors. http://www.nasatech.com/briefs/feb03/NP020859.html

    Google Scholar 

  36. L P Cheng, G M Zhang, S Y Zhang, et al. Miniaturization of surface acoustic waves rotary motor. Ultrasonics, 2002, 39:591–594.

    Article  Google Scholar 

  37. Ming Chen, Dongyuan Fan, Suilao Li. Sur face Acoustic Wave Sensors. Xi’an: Northwestern Polytechnical University Press, 1997: 4–5. (in Chinese)

    Google Scholar 

  38. Mingshan Xiao, Daoren Song. Basement of Surface Acoustic Wave Apparatus. Jinan: Shangdong Science Technology Press, 1980: 56–59. (in Chinese)

    Google Scholar 

  39. Guidong Luan, Jinduo Zhang, Renqian Wang. Piezoelectric Transducer and Transducerar-ray. Beijing: Peking University Press, 1990. (in Chinese)

    Google Scholar 

  40. M K Kurosawa, H Itona, K Asai. Elastic friction drive of surface acoustic wave motor. Ultrasonic, 2003, 41(6): 271–275.

    Article  Google Scholar 

  41. M K Kurosawa, M Chiba, T Higuchi. Evaluation of a surface acoustic wave motor with a multi-contact-point slider. Smart Mater. Struct, 1998, 7:305–311.

    Article  Google Scholar 

  42. N Osakabe, M K Kurosawa, T Higuchi, et al. Surface acoustic wave linear motor using silicon slider. Proceedings of IEEE Workshop on Micro Electro Mechanical Systems. Heidelberg, 1998: 25–29.

    Google Scholar 

  43. M K Kurosawa, N Osakabe, K Tojo, et al. Sur face Acoustic Wave Linear Motor with a Silicon Slider. Technical Report of IEICE, 1998: 55–62.

    Google Scholar 

  44. K Asai, M K Kurosawa. Surface acoustic wave motor using an energy circulation driving method. IEEE Ultrasonic Symposium, 2001, 1:525–529.

    Google Scholar 

  45. K Asai, M K Kurosawa, T Higuchi. Novel power circulation methods for a surface acoustic wave motor. IEEE Ultrasonics Symposium, 1999, 1: 667–670.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Science Press Beijing and Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, C. (2011). Other Ultrasonic Motors. In: Ultrasonic Motors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15305-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15305-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15304-4

  • Online ISBN: 978-3-642-15305-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics