Skip to main content

Ultrasonic Motor Using Longitudinal-Torsional Hybrid Vibration

  • Chapter
Ultrasonic Motors

Abstract

The ultrasonic motor using a longitudinal-torsional (L-T) hybrid vibration (LTUM) is a significant type of ultrasonic motor. The longitudinal and torsional vibrations are combined to generate the elliptic motions of points on a driving surface. The rotor is driven by the friction force between the stator and rotor. The tangential and axial direction vibrations of the point on the driving surface of LTUM can be excited by longitudinal and torsional piezoelectric pieces, respectively. In this way, the load characteristics of the motor can be controlled independently by changing two input voltages. One controls the rotary speed of the rotor, and the other controls the friction which transmits the driving force. While the motor operates, the contact area between the stator and rotor covers the whole end surface of the stator, which allows the motor to yield greater output torque. In general review, LTUMs can be divided into two main types: the first is a multi-mode type, which has the longitudinal and torsional vibrators in the stator. The second one is a mode conversion type, in which only one longitudinal vibration mode is involved, and the torsional vibration can be induced by the longitudinal vibration. LTUM can be applied to robots, saloon cars, household appliances, pinpoint devices, spacecrafts, and especially, where large torque at low speed is needed. Based on the research on LTUM in PDLab, this section expounds the movement mechanism, structural design and dynamic analysis of several LTUMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chunsheng Zhao. Ultrasonic motor techniques in the 21st century. Journal of Vibration Measurement & Diagnosis, 2000, 20(1): 7–12. (in Chinese)

    Google Scholar 

  2. Heming Sun, Chunsheng Zhao, Xiaodong Zhu. Recent advances in ultrasonic motor using L-T vibration modes. Journal of Vibration Measurement & Diagnosis, 2002, 22(1): 9–14. (in Chinese)

    Google Scholar 

  3. K Nakamura, M Kurosawa, S Ueha, Characteristics of a hybrid transducer-type ultrasonic motor. IEEE, Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1991, 38(3):189–193.

    Article  Google Scholar 

  4. K Nakamura, S Ueha, Performances of a hybrid transducer type ultrasonic motor as a function of the size. IEEE Ultrasonics Symposium Proceedings, 1994, 1–3: 557–560.

    Google Scholar 

  5. J Satonobu, N Torh, K Nakamura, et al. Construction of megatorque hybrid transducer type ultrasonic motor. Japanese journal of Applied Physics, 1996, 35(9B): 5038–5041.

    Article  Google Scholar 

  6. Y Tomikawa, K Adachi, M Aoyagi. Some constructions and characteristics of rod type piezoelectric ultrasonic motor using L-T vibrations. IEEE, Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1992, 39(5): 600–608.

    Article  Google Scholar 

  7. Hengbing Zhao, Xiaodong Liu, Yongxiao Chen, et al. Analysis of the structure of ultrasonic motor with large torque. Small & Special Electrical Machines, 1999, 27(4): 15–18. (in Chinese)

    Google Scholar 

  8. Heming Sun, Chunsheng Zhao. Structure optimization of ultrasonic motor using L-T mode. Micromotors Servo Technique, 2002, 35(4): 7–10. (in Chinese)

    Google Scholar 

  9. Heming Sun, Chunsheng Zhao, Xiaodong Zhu. Experimental study of ultrasonic motor using L-T mode. Small & Special Electrical Machines, 2002, 30(4): 3–8. (in Chinese)

    Google Scholar 

  10. Zheng Tao, Chunsheng Zhao. Brush type ultrasonic motor using L-T vibration modes. Chinese Invention Patent, 2004 10014953, 2004-05-20.

    Google Scholar 

  11. Zheng Tao. Research on Ultrasonic Motor Using L-T Vibrator. Dissertation for the Degree of Doctor of Philosophy. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006. (in Chinese)

    Google Scholar 

  12. J van Randeraat, R E Setterington. Piezoelectric Ceramics. Beijing: Science Press, 1981. (in Chinese)

    Google Scholar 

  13. B Jaffe. Piezoelectric Ceramics. Beijing: Science Press, 1979. (in Chinese)

    Google Scholar 

  14. Tetsuro Tanaka. Piezoelectric Ceramic Materials. Beijing: Science Press, 1982. (in Chinese)

    Google Scholar 

  15. Daoren Song, Mingshan Xiao. Piezoelectric Effect and Applications. Beijing: Popular Science Press, 1987. (in Chinese)

    Google Scholar 

  16. Jinfeng Wang, Zutong Jiang, Ruida Shi. Piezoelectric Vibration. Beijing: Science Press, 1989. (in Chinese)

    Google Scholar 

  17. Fuxue Zhang, Liqun Wang. Modern Piezoelectricity. Beijing: Science Press, 2002. (in Chinese)

    Google Scholar 

  18. Wei Feng, Xizhong Wu, Yanding Wei, et al. Principle and research on the modal matching of the L-T composite USM. Micromotors Servo Technique, 2001, 34(6): 7–12. (in Chinese)

    Google Scholar 

  19. Zhongmao Lin. Principle and Design of Ultrasonic Horn. Beijing: Science Press, 1987. (in Chinese)

    Google Scholar 

  20. S Ueha, Y Tomikawa. Ultrasonic Motors Theory and Applications. Oxford: Oxford Science Publications, 1993.

    Google Scholar 

  21. Jifeng Guo, Shujuan Gong, Xiao Liu, et al. The study of characteristics on the L-T ultrasonic motor. Acta Acustica, 2003, 29(4): 334–340. (in Chinese)

    Google Scholar 

  22. Jifeng Guo, Yanding Wei, Xiao Liu, et al. Force transfering model of hybrid transducer type ultrasonic motor. Proceedings of the Chinese Society for Electrical Engineering, 2003, 23(5): 80–85.

    Google Scholar 

  23. D Karnopp. Computer simulation of stick-slip friction in mechanical dynamic systems. Journal of Dynamics Systems, Measurement, and Control, 1985, 107(1):100–103.

    Article  Google Scholar 

  24. J Tsujino, A Suzuki. Load characteristics of ultrasonic motor with a longitudinal-torsional converter and various nonlinear springs for inducing static pressure. IEEE Ultrasonics Symposium. Atlanta, GA: IEEE, 2001:545–550.

    Google Scholar 

  25. J Tsujino, R Suzuki, H Yasojima. Load characteristics of ultrasonic rotary motor using a L-T vibration converter. IEEE Ultrasonics Symposium. San Antonio, TX: IEEE, 1996: 377–382.

    Google Scholar 

  26. J Tsujino, T Uchida, K Yamano. Ultrasonic plastic welding using two 27 kHz complex vibration systems. IEEE Ultrasonics Symposium. Toronto, Ont.: IEEE, 1997: 855–859.

    Google Scholar 

  27. Y Koike, F Magane, K Nakamura, et al. A vibration analysis of a L-T coupling vibrator with oblique slots. 1997 World Congress on Ultrasonics. Yokohama, 1997.

    Google Scholar 

  28. Shuyu Lin. Study on the L-T composite transducer with slanting slots. Acta Acustica, 1999, 24(1): 59–65. (in Chinese)

    Google Scholar 

  29. Jun Pi. L-T vibration converter of cylinder with multiple diagonal slits. Chinese Journal of Mechanical Engineering, 2008, 44(05): 242–248. (in Chinese)

    Article  Google Scholar 

  30. Xiaoqing Ma. Impact Dynamics. Beijing: Beijing Institute of Technology Press, 1992. (in Chinese)

    Google Scholar 

  31. Hongwen Liu. Mechanics of Materials (on list). Beijing: Higher Education Press, 1992. (in Chinese)

    Google Scholar 

  32. Lin Yang, Jiamei Jin, Chunsheng Zhao. An ultrasonic rotary motor by using longitudinal-torsional vibration converter with holes. Journal of Vibration, Measurement & Diagnosis, 2009(2): 133–136. (in Chinese)

    Google Scholar 

  33. Lin Yang, Qingjun Ding, Chunsheng Zhao, et al. Load characteristics of ultrasonic motor using hongitudinaltorsional convertor with diagonal slits under various friction pairs. Proceedings of the CSEE, 2010 (15): 94–98. (in Chinese)

    Google Scholar 

  34. Junli Shi. Research on Mathematical Driving Model of Ultrasonic Motor and Its Frictional materials. Chengdu: Southwest Jiaotong University, 2004. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Science Press Beijing and Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, C. (2011). Ultrasonic Motor Using Longitudinal-Torsional Hybrid Vibration. In: Ultrasonic Motors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15305-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15305-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15304-4

  • Online ISBN: 978-3-642-15305-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics