Skip to main content

Recurrence Plots for Identifying Memory Components in Single-Trial EEGs

  • Conference paper
Brain Informatics (BI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6334))

Included in the following conference series:

Abstract

The purpose of this study was to apply recurrence plots and recurrence quantification analysis (RQA) on event related potentials (ERPs) recorded during memory recognition tests. Data recorded during memory retrieval in four scalp region was used. Tow most important ERP’s components corresponding to memory retrieval, FN400 and LPC, were detected in recurrence plots computed for single-trial EEGs. In addition, the RQA was used to quantify changes in signal dynamic structure during memory retrieval, and measures of complexity as RQA variables were computed. Given the stimulus, amplitude of the RQA variables increases around 400ms, corresponding to dimension reduction of system. Furthermore, after 800ms these amplitudes decreased which can be as a consequence of an increase in system dimension and back to its basic state. The mean amplitude of Old items was more than New one.

Using this method, we found its ability to detect memory components of EEG signals and do a distinction between Old/ New items. In contrast with linear techniques recurrence plots and RQA do not need large number of recorded trials, and they can indicate changes in even single-trial EEGs. RQA can also show differences between old and new events in a memory process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Donchin, E., Ritter, W., McCallum, C.: Cognitive psychophysiology: the endogenous components of the ERP. In: Callaway, E., Tueting, P., Koslow, S. (eds.) Event-related potentials in man, pp. 349–441. Academic Press, New York (1978)

    Chapter  Google Scholar 

  2. Friedman, D., Johnson Jr., R.: Event-related potential (ERP) studies of memory encoding and retrieval: a selective review. Microsc. Res. Tech. 51, 6–28 (2000)

    Article  Google Scholar 

  3. Rugg, M.D., Allan, K.: Memory retrieval: an electrophysiological perspective. In: The new cognitive neurosciences, 2nd edn., pp. 805–816. MIT Press, Cambridge (2000)

    Google Scholar 

  4. Jacoby, L.L.: A process dissociation framework: separating automatic from intentional uses of memory. J. Mem. Lang. 30, 513–541 (1991)

    Article  Google Scholar 

  5. Reder, L.M., Nhouyvanisvong, A., Schunn, C.D., Ayers, M.S., Angstadt, P., Hiraki, K.: A mechanistic account of the mirror effect for word frequency: a computational model of remember-know judgments in a continuous recognition paradigm. Exp. Psychol. Learn. Mem. Cogn. 26, 294–320 (2000)

    Article  Google Scholar 

  6. Yonelinas, A.P., Mem Lang, J.: J. Mem. Lang. The nature of recollection and familiarity: a review of 30 years of research 46, 441–517 (2002)

    Google Scholar 

  7. Curran, T., DeBuse, C., Woroch, B., Hirshman, E.: Combined Pharmacological and Electrophysiological Dissociation of Familiarity and Recollection. Behavioral/Systems/Cognitive: The Journal of Neuroscience 26(7) (2006)

    Google Scholar 

  8. Kandel, E.R., Schwartz, J.H., Jessel, T.M.: Essentials of Neural Science and Behavior (1995) (Appleton & Lange, East Norwalk, Connecticut)

    Google Scholar 

  9. Kutas, M., van Petten, C.: Psycholinguistics electrified: event related potential investigations. In: Gensbacher, M.A. (ed.) Handbook of psycholinguistics, pp. 83–143. Academic Press, San Diego (1994)

    Google Scholar 

  10. Amit, D.J.: Modeling Brain Function. The World of Attractor Neural Networks. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  11. P.L.: Electric Fields of the Brain. Oxford University Press, NY (1981)

    Google Scholar 

  12. Longtin, A., Galdrikian, B., Farmer, B., Theiler, J., Eubank, S.: Testing for nonlinearity in time series: The method of surrogate data. Physica D 58, 77–94 (1992)

    Article  MATH  Google Scholar 

  13. Babloyantz, A., Salazar, J.M., Nicolis, C.: Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys. Lett. A 111, 152–156 (1985)

    Article  Google Scholar 

  14. Gallez, D., Babloyantz, A.: Predictability of human EEG: A dynamical approach. Biol. Cybern. 64, 381–391 (1991)

    Article  Google Scholar 

  15. Rapp, P.E., Zimmerman, I.D., Albano, A.M., de Guzman, G.C., Greenbaun, N.N., Bashore, T.R.: Experimental studies of chaotic neural behavior: Cellular activity and electroencephalographic signals. In: Othmer, H.G. (ed.) Nonlinear Oscillations in Biology and Chemistry. Lecture Notes in Biomathematics, vol. 66, pp. 175–205. Springer, Berlin (1986)

    Chapter  Google Scholar 

  16. Lutzenberger, W., Elbert, T., Birbaumer, N., Ray, W.J., Schupp, H.: The scalp distribution of the fractal dimension of the EEG and its variation with mental tasks. Brain Topogr. 5, 27–33 (1992)

    Article  Google Scholar 

  17. Pritchard, W.S., Duke, D.W.: Dimensional analysis of no-task human EEG using the Grassberger-Procaccia method. Psychophysiol. 29, 182–191 (1992)

    Article  Google Scholar 

  18. Sutton, S., Braren, M., Zubin, J., John, E.R.: Evoked potential correlates of stimulus uncertainty. Science 150, 1187–1188 (1965)

    Article  Google Scholar 

  19. Wong, K.F.K., Galka, A., Yamashitad, O., Ozaki, T.: Modelling non-stationary variance in EEG time series by state space GARCH model. Computers in Biology and Medicine (2005)

    Google Scholar 

  20. Wong, K.K.F.: Modelling non-stationary variance in EEG time series by state space GARCH model

    Google Scholar 

  21. Thomasson, N., Hoeppner, T.J., Webber Jr., C.L., Zbilut, J.P.: Recurrence quantification in epileptic EEGs. Phys. Lett. A 279(1-2), 94–101 (2001)

    Article  Google Scholar 

  22. Marwan, N., Meinke, A.: J. Bifur.Extended recurrence plot analysis and its application to ERP data. Chaos Cogn. Int. Complex Brain Dynam. 14, 761–771 (2004)

    MATH  Google Scholar 

  23. Schinkel, S., Marwan, N., Kurths, J.: Order patterns recurrence plots in the analysis of ERP data. Cogn. Neurodyn. 1, 317–325 (2007)

    Article  Google Scholar 

  24. Eckmann, J.-P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. Europhys 5, 973–977 (1987)

    Article  Google Scholar 

  25. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence. Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Berlin (1981)

    Google Scholar 

  26. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45, 712–716 (1980)

    Article  Google Scholar 

  27. Webber Jr., C.L., Zbilut, J.P.: Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76, 956–973 (1994)

    Google Scholar 

  28. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence plot based measures of complexity and its application to heart rate variability data. Phys. Rev. E, 66(2) (2002)

    Google Scholar 

  29. Theiler, J.: Spurious dimension from correlation algorithms applied to limited time-series data. Phys. Rev. A 34, 2427–2432 (1986)

    Article  Google Scholar 

  30. Kozma, R., Freeman, W.J., Erdi, P.: The KIV model—nonlinear sp spatio-temporal dynamics of the primordial vertebrate forebrain. Neurocomputing 52-54, 819–826 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Talebi, N., Nasrabadi, A.M. (2010). Recurrence Plots for Identifying Memory Components in Single-Trial EEGs. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds) Brain Informatics. BI 2010. Lecture Notes in Computer Science(), vol 6334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15314-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15314-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15313-6

  • Online ISBN: 978-3-642-15314-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics