Skip to main content

Dimension Reduction for Regression with Bottleneck Neural Networks

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2010 (IDEAL 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6283))

Abstract

Dimension reduction for regression (DRR) deals with the problem of finding for high-dimensional data such low-dimensional representations, which preserve the ability to predict a target variable. We propose doing DRR using a neural network with a low-dimensional “bottleneck” layer. While the network is trained for regression, the bottleneck learns a low-dimensional representation for the data. We compare our method to Covariance Operator Inverse Regression (COIR), which has been reported to perform well compared to many other DRR methods. The bottleneck network compares favorably with COIR: it is applicable to larger data sets, it is less sensitive to tuning parameters and it gives better results on several real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parviainen, E.: Deep bottleneck classifiers in supervised dimension reduction. In: Proc. of ICANN 2010 (to appear, 2010)

    Google Scholar 

  2. Kim, M., Pavlovic, V.: Dimensionality reduction using covariance operator inverse regression. In: Proc. of CVPR (Computer Vision and Pattern Recognition) (2008)

    Google Scholar 

  3. Kim, M., Pavlovic, V.: Covariance operator based dimensionality reduction with extension to semi-supervised learning. In: Proc. of AISTATS. JMLR: W&CP, vol. 5, pp. 280–287 (2009)

    Google Scholar 

  4. Li, K.C.: Sliced inverse regression for dimension reduction. Journal of the American Statistical Association 86(414), 316–327 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fukumizu, K., Bach, F.R., Jordan, M.I.: Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. Journal of Machine Learning Research 5, 73–99 (2004)

    MathSciNet  Google Scholar 

  6. Fukumizu, K., Bach, F.R., Jordan, M.I.: Kernel dimension reduction in regression. The Annals of Statistics 37(1), 1871–1905 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Li, K.C.: High dimensional data analysis via the SIR/PHD approach. Lecture notes in progress (April 2000), http://www.stat.ucla.edu/~kcli/

  8. Nilsson, J., Sha, F., Jordan, M.I.: Regression on manifolds using kernel dimension reduction. In: Proc. of ICML (2007)

    Google Scholar 

  9. Moon, K., Pavlović, V.: Regression using Gaussian Process manifold kernel dimensionality reduction. In: Proc. of MLSP (Machine Learning for Signal Processing), pp. 14–19 (2008)

    Google Scholar 

  10. DeMers, D., Cottrell, G.: Non-linear dimensionality reduction. In: Proc. of NIPS, pp. 580–587 (1993)

    Google Scholar 

  11. Schneider, J.J., Kirkpatrick, S.: Stochastic optimization. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  12. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  13. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 643–660 (2001)

    Article  Google Scholar 

  14. Tsanas, A., Little, M.A., McSharry, P.E., Ramig, L.O.: Accurate telemonitoring of Parkinson s disease progression by non-invasive speech tests. IEEE Transactions on Biomedical Engineering (2009)

    Google Scholar 

  15. Redmond, M.A., Baveja, A.: A data-driven software tool for enabling cooperative information sharing among police departments. European Journal of Operational Research 141, 660–678 (2002)

    Article  MATH  Google Scholar 

  16. Yeh, I.C.: Modeling of strength of high performance concrete using artificial neural networks. Cement and Concrete Research 28(12), 1797–1808 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parviainen, E. (2010). Dimension Reduction for Regression with Bottleneck Neural Networks. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2010. IDEAL 2010. Lecture Notes in Computer Science, vol 6283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15381-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15381-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15380-8

  • Online ISBN: 978-3-642-15381-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics