Skip to main content

A Genetic Algorithm to Design Industrial Materials

  • Conference paper
Knowledge-Based and Intelligent Information and Engineering Systems (KES 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6278))

  • 1298 Accesses

Abstract

At present, the development of our society is still marked by the need for lighter and stronger structures with a minimum manufacturing cost. The materials that are responding best to these needs are composite materials and as a result, these are replacing many traditional materials such as steel, wood or aluminium. Designing composite materials is difficult because it involves designing the geometry of the element and composition. Traditionally, due to the limited knowledge of these materials, these design tasks have been based on approximate methods; the possibilities for creating composite materials is almost unlimited, characterization by testing is very expensive and it is difficult to apply the results to other contexts. Due to this fact, the whole design task relies on the ability of an expert to select the best combination based on their knowledge and experience. This paper presents and compares a genetic Algorithm to design industrial materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANSYS Multiphysics, Release 11.0. ANSYS, Inc.

    Google Scholar 

  2. Barbero, E.J.: Introduction to composite materials design. Taylor Francis, London (1999)

    Google Scholar 

  3. Conti, P., et al.: Layer thickness optimization in a laminated composite. Composites Part B, 28B, pp. 309–317. Elsevier Science Limited, Amsterdam (1997)

    Google Scholar 

  4. Davis, L. (ed.): Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  5. Dietz, A.G.H.: Composite Materials. Edgar Marburg Lecture. American Society for Testing and Materials (1965)

    Google Scholar 

  6. Duratti, L., Salvo, L., Landru, D., Bréchet, Y.: Selecting the components of polymeric composites. Advanced Engineering Materials 4(6), 367–371 (2002)

    Article  Google Scholar 

  7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  8. Grosset, L., Le Riche, R., Haftka, R.T.: A double-distribution statistical algorithm for composite laminate optimization. Structural and Multidisciplinary Optimization 31(1), 49–59 (2006)

    Article  Google Scholar 

  9. Gürdal, Z.: Design and optimization of laminated composite materials. Wiley, New York (1999)

    Google Scholar 

  10. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  11. Kim, C.W., et al.: Stacking sequence optimization of laminated plates. Composite Structures 39(3-4), 283–288 (1998)

    Article  Google Scholar 

  12. Mallick, P.K.: Composites engineering handbook. University of Michigan, Dearborn (1997)

    Google Scholar 

  13. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  14. Miravete, A.: Materiales Compuestos. Zaragoza (ed.), 1a ed., Antonio Miravete (2000)

    Google Scholar 

  15. Puck, A., Schurmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58, 1045–1068 (1998)

    Article  Google Scholar 

  16. Puck, A., Schurmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol, Part B 62, 1633–1672 (2002)

    Article  Google Scholar 

  17. Reeves, C.: Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientific Publications, Malden (1993)

    MATH  Google Scholar 

  18. Revuelta, D.: Refuerzos y matrices. Materiales Compuestos Avanzados en la Construcción. Madrid, Instituto de Ciencias de la Construcción Eduardo Torroja (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tenorio, E., Gómez-Ruiz, J., Peláez, J.I., Doña, J.M. (2010). A Genetic Algorithm to Design Industrial Materials. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2010. Lecture Notes in Computer Science(), vol 6278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15393-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15393-8_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15392-1

  • Online ISBN: 978-3-642-15393-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics