Skip to main content

Spectral-Element Methods

  • Chapter
  • First Online:
Full Seismic Waveform Modelling and Inversion

Abstract

The spectral-element method is a high-order numerical method that allows us to solve the seismic wave equation in 3D heterogeneous Earth models. The method enables adaptation of the mesh to the irregular surface topography and to the variable wavelengths inside the Earth. Moreover, the spectral-element method yields accurate solutions for surface waves without increasing the number of grid points per wavelength , therefore overcoming some of the most severe deficiencies of the finite-difference method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Capdeville, Y., Chaljub, E., Vilotte, J. P., Montagner, J.-P.: Coupling the spectral-element method with a modal solution for elastic wave propagation in global earth models. Geophys. J. Int. 152, 34–67 (2003a)

    Article  Google Scholar 

  • Capdeville, Y., Guillot, L., Marigo, J.-J.: 1-D non-periodic homogenisation for the seismic wave equation. Geophys. J. Int. 181, 897–910 (2010a)

    Google Scholar 

  • Chaljub, E., Capdeville, Y., Vilotte, J. P.: Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral-element approximation on non-conforming grids. J. Comput. Phys. 187, 457–491 (2003)

    Article  Google Scholar 

  • Chaljub, E., Valette, B.: Spectral element modelling of three-dimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core. Geophys. J. Int. 158, 131–141 (2004)

    Article  Google Scholar 

  • Chaljub, E., Komatitsch, D., Capdeville, Y., Vilotte, J. P., Valette, B., Festa, G.: Spectral-element analysis in seismology. In: Advances in Geophysics, vol. 48, 365–419. Editors: Wu, R.-S., Maupin, V. Elsevier, Amsterdam (2007)

    Google Scholar 

  • De Basabe, J. D., Sen, M. K.: Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics 72, T81–T95 (2007)

    Article  Google Scholar 

  • Dziewonski, A. M., Anderson, D. L.: Preliminary reference Earth model. Phys. Earth Planet. Int. 25, 297–356 (1981)

    Article  Google Scholar 

  • Faccioli, E., Maggio, F., Paolucci, R., Quarteroni, A.: 2D and 3D elastic wave propagation by a spseudo-spectral domain decomposition method. J. Seismol. 1, 237–251 (1997)

    Article  Google Scholar 

  • Fichtner, A., Igel, H.: Efficient numerical surface wave propagation through the optimization of discrete crustal models – a technique based on non-linear dispersion curve matching (DCM). Geophys. J. Int. 173, 519–533 (2008)

    Article  Google Scholar 

  • Fichtner, A., Kennett, B. L. N., Igel, H., Bunge, H.-P.: Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophys. J. Int. 179, 1703–1725 (2009)

    Article  Google Scholar 

  • Guillot, L., Capdeville, Y., Marigo, J.-J.: 2-D non-periodic homogenisation of the elastic wave equation – SH case. Geophys. J. Int., 182, 1438–1454 (2010)

    Article  Google Scholar 

  • Komatitsch, D., Vilotte, J. P.: The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seism. Soc. Am. 88, 368–392 (1998)

    Google Scholar 

  • Komatitsch, D., Barnes, C., Tromp, J.: Wave propagation near a fluid-solid interface: a spectral-element approach. Geophysics 65, 623–631 (2000)

    Article  Google Scholar 

  • Komatitsch, D., Martin, R., Tromp, J., Taylor, M. A., Wingate, B. A.: Wave propagation in 2D elastic media using a spectral element method with triangles and quadrangles. J. Comput. Acoust. 9, 703–718 (2001)

    Article  Google Scholar 

  • Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave propagation-II. 3-D models, oceans, rotation and self-gravitation. Geophys. J. Int. 150, 303–318 (2002)

    Google Scholar 

  • Komatitsch, D., Liu, Q., Tromp, J., Süss, P., Stidham, C., Shaw, J. H.: Simulation of ground motion in the Los Angeles basin based upon the spectral-element method. Bull. Seism. Soc. Am. 94, 187–206 (2004)

    Article  Google Scholar 

  • Maday, Y., Patera, A. T.: Spectral element methods for the incompressible Navier-Stokes equations. In: Noor, A. K., Oden, J. T. (eds.) State of the Art Survey in Computational Mechanics, pp. 71–143. ASME, New York, NY (1989)

    Google Scholar 

  • Mercerat, E. D., Vilotte, J. P., Sánchez-Sesma, F. J.: Triangular spectral-element simulation of two-dimensional elastic wave propagation using unstructured triangular grids. Geophys. J. Int. 166, 679–698 (2006)

    Article  Google Scholar 

  • Nissen-Meyer, T., Fournier, A., Dahlen, F. A.: A two-dimensional spectral-element method for computing spherical-Earth seismograms – I. Moment-tensor source. Geophys. J. Int. 168, 1067–1092 (2007a)

    Article  Google Scholar 

  • Nissen-Meyer, T., Dahlen, F. A., Fournier, A.: Spherical Earth Fréchet sensitivity kernels. Geophys. J. Int. 168, 1051–1066 (2007b)

    Article  Google Scholar 

  • Nissen-Meyer, T., Fournier, A., Dahlen, F. A.: A two-dimensional spectral-element method for computing spherical-Earth seismograms – II. Waves in solid-fluid media. Geophys. J. Int. 174, 873–888 (2008)

    Google Scholar 

  • Patera, A. T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)

    Article  Google Scholar 

  • Priolo, E., Carcione, J. M., Seriani, G.: Numerical simulation of interface waves by high-order spectral modeling techniques. J. Acoust. Soc. Am. 95, 681–693 (1994)

    Article  Google Scholar 

  • Seriani, G.: 3-D large-scale wave propagation modeling by a spectral element method on a Cray T3E multiprocessor. Comput. Methods Appl. Mech. Eng. 164, 235–247 (1998)

    Article  Google Scholar 

  • Seriani, G., Oliveira, S. P.: Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion 45, 729–744 (2008)

    Article  Google Scholar 

  • Stupazzini, M., Paolucci, R., Igel, H.: Near-fault earthquake ground-motion simulation in the Grenoble valley by a high-performance spectral-element code. Bull. Seism. Soc. Am. 99, 286–301 (2009).

    Article  Google Scholar 

  • Capdeville, Y., Guillot, L., Marigo, J.-J.: 2-D non-periodic homogenisation to upscale elastic media for P-SV waves. Geophys. J. Int. 182, 903–922 (2010b)

    Article  Google Scholar 

  • Komatitsch, D.: Méthodes spectrales et éléments spectraux pour l’équation de l’élastodynamique 2D et 3D en milieu hétérogène. Ph.D. thesis, Institut de Physique du Globe de Paris (1997)

    Google Scholar 

  • Komatitsch, D., Tsuboi, S., Tromp, J.: The spectral-element method in seismology. In: Seismic Earth: Array Analysis of Broadband Seismograms, Eds. Levander, A. Nolet, G., AGU Monogr. 157, 205–228 (2005)

    Google Scholar 

  • Seriani, G., Priolo, E., Pregarz, A.: Modelling waves in anisotropic media by a spectral element method. Proceedings of the 3rd International Conference on Mathematical and Numerical Aspects of Wave Propagation, 289–298 (1995).

    Google Scholar 

  • Stupazzini, M.: 3D ground motion simulation of the Grenoble valley by GeoELSE. Proceedings of the 3rd International Symposium on the Effects of Surface Geology on Seismic Motion (ESG), Grenoble, France (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fichtner .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fichtner, A. (2011). Spectral-Element Methods. In: Full Seismic Waveform Modelling and Inversion. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15807-0_4

Download citation

Publish with us

Policies and ethics