Skip to main content

Atlas Based Segmentation and Mapping of Organs at Risk from Planning CT for the Development of Voxel-Wise Predictive Models of Toxicity in Prostate Radiotherapy

  • Conference paper
Prostate Cancer Imaging. Computer-Aided Diagnosis, Prognosis, and Intervention (Prostate Cancer Imaging 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6367))

Included in the following conference series:

Abstract

The prediction of toxicity is crucial to managing prostate cancer radiotherapy (RT). This prediction is classically organ wise and based on the dose volume histograms (DVH) computed during the planning step, and using for example the mathematical Lyman Normal Tissue Complication Probability (NTCP) model. However, these models lack spatial accuracy, do not take into account deformations and may be inappropiate to explain toxicity events related with the distribution of the delivered dose. Producing voxel wise statistical models of toxicity might help to explain the risks linked to the dose spatial distribution but is challenging due to the difficulties lying on the mapping of organs and dose in a common template. In this paper we investigate the use of atlas based methods to perform the non-rigid mapping and segmentation of the individuals’ organs at risk (OAR) from CT scans. To build a labeled atlas, 19 CT scans were selected from a population of patients treated for prostate cancer by radiotherapy. The prostate and the OAR (Rectum, Bladder, Bones) were then manually delineated by an expert and constituted the training data. After a number of affine and non rigid registration iterations, an average image (template) representing the whole population was obtained. The amount of consensus between labels was used to generate probabilistic maps for each organ. We validated the accuracy of the approach by segmenting the organs using the training data in a leave one out scheme. The agreement between the volumes after deformable registration and the manually segmented organs was on average above 60% for the organs at risk. The proposed methodology provides a way to map the organs from a whole population on a single template and sets the stage to perform further voxel wise analysis. With this method new and accurate predictive models of toxicity will be built.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Crevoisier, R., Tucker, S.L., Dong, L., Mohan, R., Cheung, R., Cox, J.D., Kuban, D.A.: Increased risk of biochemical and local failure in patients with distended rectum on the planning ct for prostate cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 62(4), 965–973 (2005)

    Article  Google Scholar 

  2. Fiorino, C., Rancati, T., Valdagni, R.: Predictive models of toxicity in external radiotherapy: dosimetric issues. Cancer 115(suppl. 13), 3135–3140 (2009)

    Article  Google Scholar 

  3. Ting, J.Y., Wu, X., Fiedler, J.A., Yang, C., Watzich, M.L., Markoe, A.: Dose-volume histograms for bladder and rectum. Int. J. Radiat. Oncol. Biol. Phys. 38(5), 1105–1111 (1997)

    Article  Google Scholar 

  4. Jensen, I., Carl, J., Lund, B., Larsen, E.H., Nielsen, J.: Radiobiological impact of reduced margins and treatment technique for prostate cancer in terms of tumor control probability (TCP) and normal tissue complication probability (NTCP). Med. Dosim (May 2010)

    Google Scholar 

  5. Cambria, R., Jereczek-Fossa, B.A., Cattani, F., Garibaldi, C., Zerini, D., Fodor, C., Serafini, F., Pedroli, G., Orecchia, R.: Evaluation of late rectal toxicity after conformal radiotherapy for prostate cancer: a comparison between dose-volume constraints and ntcp use. Strahlenther Onkol. 185(6), 384–389 (2009)

    Article  Google Scholar 

  6. Grigorov, G.N., Chow, J.C.L., Grigorov, L., Jiang, R., Barnett, R.B.: IMRT: improvement in treatment planning efficiency using ntcp calculation independent of the dose-volume-histogram. Med. Phys. 33(5), 1250–1258 (2006)

    Article  Google Scholar 

  7. Sohn, M., Alber, M., Yan, D.: Principal component analysis-based pattern analysis of dose-volume histograms and influence on rectal toxicity. Int. J. Radiat. Oncol. Biol. Phys. 69(1), 230–239 (2007)

    Article  Google Scholar 

  8. Fiorino, C., Vavassori, V., Sanguineti, G., Bianchi, C., Cattaneo, G.M., Piazzolla, A., Cozzarini, C.: Rectum contouring variability in patients treated for prostate cancer: impact on rectum dose-volume histograms and normal tissue complication probability. Radiother. Oncol. 63(3), 249–255 (2002)

    Article  Google Scholar 

  9. Fiorino, C., Cozzarini, C., Vavassori, V., Sanguineti, G., Bianchi, C., Cattaneo, G.M., Foppiano, F., Magli, A., Piazzolla, A.: Relationships between dvhs and late rectal bleeding after radiotherapy for prostate cancer: analysis of a large group of patients pooled from three institutions. Radiother. Oncol. 64(1), 1–12 (2002)

    Article  Google Scholar 

  10. Marzi, S., Arcangeli, G., Saracino, B., Petrongari, M.G., Bruzzaniti, V., Iaccarino, G., Landoni, V., Soriani, A., Benassi, M.: Relationships between rectal wall dose-volume constraints and radiobiologic indices of toxicity for patients with prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 68(1), 41–49 (2007)

    Article  Google Scholar 

  11. Benk, V.A., Adams, J.A., Shipley, W.U., Urie, M.M., McManus, P.L., Efird, J.T., Willett, C.G., Goitein, M.: Late rectal bleeding following combined x-ray and proton high dose irradiation for patients with stages t3-t4 prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 26(3), 551–557 (1993)

    Article  Google Scholar 

  12. Rancati, T., Fiorino, C., Gagliardi, G., Cattaneo, G.M., Sanguineti, G., Borca, V.C., Cozzarini, C., Fellin, G., Foppiano, F., Girelli, G., Menegotti, L., Piazzolla, A., Vavassori, V., Valdagni, R.: Fitting late rectal bleeding data using different ntcp models: results from an italian multi-centric study (airopros0101). Radiother. Oncol. 73(1), 21–32 (2004)

    Article  Google Scholar 

  13. Cheung, M.R., Tucker, S.L., Dong, L., de Crevoisier, R., Lee, A.K., Frank, S., Kudchadker, R.J., Thames, H., Mohan, R., Kuban, D.: Investigation of bladder dose and volume factors influencing late urinary toxicity after external beam radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 67(4), 1059–1065 (2007)

    Article  Google Scholar 

  14. Skala, M., Rosewall, T., Dawson, L., Divanbeigi, L., Lockwood, G., Thomas, C., Crook, J., Chung, P., Warde, P., Catton, C.: Patient-assessed late toxicity rates and principal component analysis after image-guided radiation therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 68(3), 690–698 (2007)

    Article  Google Scholar 

  15. Jani, A.B., Hand, C.M., Pelizzari, C.A., Roeske, J.C., Krauz, L., Vijayakumar, S.: Biological-effective versus conventional dose volume histograms correlated with late genitourinary and gastrointestinal toxicity after external beam radiotherapy for prostate cancer: a matched pair analysis. BMC Cancer 3, 16 (2003)

    Article  Google Scholar 

  16. Meijer, G.J., de Klerk, J., Bzdusek, K., van den Berg, H.A., Janssen, R., Kaus, M.R., Rodrigus, P., van der Toorn, P.P.: What ctv-to-ptv margins should be applied for prostate irradiation? four-dimensional quantitative assessment using model-based deformable image registration techniques. Int. J. Radiat. Oncol. Biol. Phys. 72(5), 1416–1425 (2008)

    Article  Google Scholar 

  17. Jaffray, D.A., Lindsay, P.E., Brock, K.K., Deasy, J.O., Tomé, W.A.: Accurate accumulation of dose for improved understanding of radiation effects in normal tissue. Int. J. Radiat. Oncol. Biol. Phys. 76(suppl. 3), S135–S139 (2010)

    Google Scholar 

  18. Kupchak, C., Battista, J., Dyk, J.V.: Experience-driven dose-volume histogram maps of NTCP risk as an aid for radiation treatment plan selection and optimization. Med. Phys. 35(1), 333–343 (2008)

    Article  Google Scholar 

  19. Heemsbergen, W.D., Al-Mamgani, A., Witte, M.G., van Herk, M., Pos, F.J., Lebesque, J.V.: Urinary obstruction in prostate cancer patients from the dutch trial (68 gy vs. 78 gy): Relationships with local dose, acute effects, and baseline characteristics. Int. J. Radiat. Oncol. Biol. Phys. (January 2010)

    Google Scholar 

  20. Witte, M.G., Heemsbergen, W.D., Bohoslavsky, R., Pos, F.J., Al-Mamgani, A., Lebesque, J.V., van Herk, M.: Relating dose outside the prostate with freedom from failure in the dutch trial 68 gy vs. 78 gy. Int. J. Radiat. Oncol. Biol. Phys. 77(1), 131–138 (2010)

    Article  Google Scholar 

  21. Dowling, J., Fripp, J., Freer, P., Ourselin, S., Salvado, O.: Automatic atlas-based segmentation of the prostate: a miccai 2009 prostate segmentation challenge entry. In: Worskshop in Med. Image Comput. Comput. Assist. Interv., (Pt. 2), pp. 17–24 (2009)

    Google Scholar 

  22. Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.R.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage 21(4), 1428–1442 (2004)

    Article  Google Scholar 

  23. Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D structure from serial histological sections. Image and Vision Computing 19(1), 25–31 (2001)

    Article  Google Scholar 

  24. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation. IEEE Trans. Med. Imag. 23, 903–921 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Acosta, O. et al. (2010). Atlas Based Segmentation and Mapping of Organs at Risk from Planning CT for the Development of Voxel-Wise Predictive Models of Toxicity in Prostate Radiotherapy. In: Madabhushi, A., Dowling, J., Yan, P., Fenster, A., Abolmaesumi, P., Hata, N. (eds) Prostate Cancer Imaging. Computer-Aided Diagnosis, Prognosis, and Intervention. Prostate Cancer Imaging 2010. Lecture Notes in Computer Science, vol 6367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15989-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15989-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15988-6

  • Online ISBN: 978-3-642-15989-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics