Skip to main content

High Quality Visual Hull Reconstruction by Delaunay Refinement

  • Chapter
Transactions on Computational Science IX

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6290))

  • 686 Accesses

Abstract

In this paper, we employ Delaunay triangulation techniques to reconstruct high quality visual hulls. From a set of calibrated images, the algorithm first computes a sparse set of initial points with a dandelion model and builds a Delaunay triangulation restricted to the visual hull surface. It then iteratively refines the triangulation by inserting new sampling points, which are the intersections between the visual hull surface and the Voronoi edges dual to the triangulation’s facets, until certain criteria are satisfied. The intersections are computed by cutting line segments with the visual hull, which is then converted to the problem of intersecting a line segment with polygonal contours in 2D. A barrel-grid structure is developed to quickly pick out possibly intersecting contour segments and thus accelerate the process of intersecting in 2D. Our algorithm is robust, fast, fully adaptive, and it produces precise and smooth mesh models composed of well-shaped triangles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cgal, computational geometry algorithms library, http://www.cgal.org

  2. Aganj, E., Pons, J.P., Segonne, F., Keriven, R., Team, W.: Certis: Spatio-temporal shape from silhouette using four-dimensional delaunay meshing. In: IEEE 11th International Conference on Computer Vision. pp. 1–8 (2007)

    Google Scholar 

  3. Allard, J., Boyer, E., Franco, J.S., Menier, C., Raffin, B.: Marker-less real time 3d modeling for virtual reality. Immersive Projection Technology (2004)

    Google Scholar 

  4. Allard, J., Franco, J.S., Menier, C., Boyer, E., Raffin, B.: The grimage platform: A mixed reality environment for interactions. In: ICVS 2006: Proceedings of the Fourth IEEE International Conference on Computer Vision Systems, p. 46. IEEE Computer Society, Washington (2006)

    Chapter  Google Scholar 

  5. Baumgart, B.: Geometric Modeling for Computer Vision. PhD thesis, Stanford University (1974)

    Google Scholar 

  6. Boissonnat, J.D., Oudot, S.: Provably good sampling and meshing of surfaces. Graphical Models 67, 405–451 (2005)

    Article  MATH  Google Scholar 

  7. Boyer, E., Franco, J.S.: A hybrid approach for computing visual hulls of complex objects (2003)

    Google Scholar 

  8. Bradski, G.: Programmer’s tool chest: The opencv library. Dr. Dobbs Journal (2000)

    Google Scholar 

  9. Bresenham, J.: Algorithm for computer control of a digital plotter. IBM Systerms Journal 4(1), 25–30 (1965)

    Article  Google Scholar 

  10. Franco, J., Boyer, E.: Efficient polyhedral modeling from silhouettes. IEEE Transactions on Pattern Analysis and Machine Intelligence (2008)

    Google Scholar 

  11. Franco, J.S.: Epvh visual hull library, http://perception.inrialpes.fr/~Franco/EPVH/

  12. Franco, J.S., Boyer, E.: Exact polyhedral visual hulls. In: British Machine Vision Conference (BMVC 2003), pp. 329–338 (2003)

    Google Scholar 

  13. Isidro, J., Sclaroff, S.: Stochastic refinement of the visual hull to satisfy photometric and silhouette consistency constraints (2003)

    Google Scholar 

  14. Kutulakos, K., Seitz, S.: A theory of shape by space carving. International Journal of Computer Vision 38(3), 199–218 (2000)

    Article  MATH  Google Scholar 

  15. Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(2), 150–162 (1994)

    Article  Google Scholar 

  16. Liang, C., Wong, K.Y.K.: Exact visual hull from marching cubes. In: VISAPP, vol. 2, pp. 597–604 (2008)

    Google Scholar 

  17. Liu, X., Yao, H., Chen, X., Gao, W.: Visual hull embossment by graph cuts. In: 2006 IEEE International Conference on Image Processing, pp. 2205–2208 (2006)

    Google Scholar 

  18. Liu, X., Yao, H., Chen, X., Gao, W.: Shape from silhouettes based on a centripetal pentahedron model. Graphical Models (2008)

    Google Scholar 

  19. Liu, X., Yao, H., Gao, W.: Shape from silhouette outlines using an adaptive dandelion model. Computer Vision and Image Understanding 105(2), 121–130 (2007)

    Article  Google Scholar 

  20. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: Proceedings of the 14th annual conference on Computer graphics and interactive techniques (1987)

    Google Scholar 

  21. Martin, W., Aggarwal, J.: Volumetric description of objects from multiple views. IEEE Trans. on PAMI 5(2), 150–158 (1983)

    Google Scholar 

  22. Matusik, W., Buehler, C., McMillan, L.: Polyhedral visual hulls for real-time rendering. In: The Eurographics Workshop, London, United Kingdom, pp. 115–126 (2001)

    Google Scholar 

  23. Mulayim, A.Y., Ozun, O., Atalay, V., Schmitt, F.: On the silhouette based 3d reconstruction and initial bounding cube estimation (2000)

    Google Scholar 

  24. Rineau, L., Yvinec, M.: A generic software design for delaunay refinement meshing. Computational Geometry: Theory and Applications 38(1-2), 100–110 (2007)

    MATH  MathSciNet  Google Scholar 

  25. Szeliski, R.: Real-time octree generation from rotating objects. Tech. rep., Cambridge Research Laboratory, Digital Equipment Corporation (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, X., Gavrilova, M.L. (2010). High Quality Visual Hull Reconstruction by Delaunay Refinement. In: Gavrilova, M.L., Tan, C.J.K., Anton, F. (eds) Transactions on Computational Science IX. Lecture Notes in Computer Science, vol 6290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16007-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16007-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16006-6

  • Online ISBN: 978-3-642-16007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics