Skip to main content

Surface Electromigration and Current Crowding

  • Chapter
  • First Online:
Nanophenomena at Surfaces

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 47))

Abstract

Steps on macroscopic surfaces provide a useful model system for quantifying electron scattering at defects in nanostructures, where the large surface/volume ratio will cause surface effects to dominate. Here, the effects of electron scattering at surface steps are quantified using thin silver films with (111) surface orientation. Using real-time scanning tunneling microscopy (STM) measurements while large current densities are applied to the films, changes in step fluctuations and island motion are observed and quantified. Applying the tools of the continuum step model, the observations are analyzed in terms of step free energies and kinetics, yielding quantitative values of the electromigration force driving the observed mass displacements. The derived magnitudes are surprisingly large in comparison with classical calculations of the force due to electron scattering at the internal surface of a conductor. This result indicates that the specific atomistic characteristics of the scattering sites, in this case kinks at the step edge, may greatly enhance the electromigration force. Within the classical ballistic picture of ballistic momentum transfer, specific mechanisms for such enhancement include enhanced geometric “blocking” at the kinked step edges, changes in carrier density near kinks, and current crowding. Quantum transmission effects at atomic-scale defect sites may also be responsible for the observed enhancement. The nature of classical current crowding as a function of the shape and size of defect was characterized using magnetic force microscopy (MFM) of fabricated micron-scale model structures. Techniques were developed to remove the effects of instrumental broadening using deconvolution, so that full three-dimensional maps of the magnetic fields above the current line are determined. A Green function inversion technique is then used to invert the field distribution to determine the spatial variations in the current density in the sample. Current enhancement is highly localized near defects and is maximized by sharp variations in geometry that require strong deflections of the current path. Current enhancements up to a factor of 4 are found at the most strongly deflecting defects, while small notches of various shapes typically cause local enhancements of tens of percent to a factor of 2. The perpendicular component of the current flow around defects forms a dipole pattern with length scale determined by the length of the defect along the direction of the current flow. The shape and localization of the dipole pattern vary with the sharpness and symmetry of the defect. The current crowding affect alone is not sufficient to explain the greatly enhanced electromigration force observed for scattering at kink sites at steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.S. Sorbello, Electromigration and the local transport field in mesoscopic systems. Phys. Rev. B39, 4984 (1989)

    Google Scholar 

  2. R.S. Sorbello, Theory of electromigration. Solid State Phys. 51, 159–231 (1997)

    Article  Google Scholar 

  3. P.S. Ho, T. Kwok, Electromigration in Metals. Rep. Prog. Phys. 52, 301–348 (1989)

    Article  CAS  Google Scholar 

  4. A.A. Baski, K.M. Saoud, K.M. Jones, 1-D nanostructures grown on the Si(5512) surface. Appl. Surf. Sci. 182, 216–222 (2001)

    Article  CAS  Google Scholar 

  5. G. Gardinowski, J. Schmeidel, H. Pfnur, T. Block, C. Tegenkamp, Switchable nanometer contacts: Authrathin Ag nanostructures on Si(100). Appl. Phys. Lett. 89, 063120 (2006)

    Article  Google Scholar 

  6. K. Midori, P. Neelima, C. Vasily, V. Bert, Nanowires and nanorings at the atomic level. Phys. Rev. Lett. 91(9), 096102 (2003)

    Article  Google Scholar 

  7. Z. Suo, W. Wang, M. Yang, Electromigration instability: Transgranular slits in interconnects. Appl. Phys. Lett. 64, 1944–1946 (1994)

    Article  Google Scholar 

  8. D. Maroudas, Dynamics of transgranular voids in metallic thin films under electromigration conditions. Appl. Phys. Lett. 67(798–800) (1995)

    Article  CAS  Google Scholar 

  9. M.R. Gungor, D. Maroudas, Nonlinear analysis of the morphological evolution of void surfaces in metallic thin films under electromigration conditions. Surf. Sci. 415, L1055–1060 (1998)

    Article  CAS  Google Scholar 

  10. O. Kraft, E. Arzt, Numerical simulation of electromigration -induced shape changes of voids in bamboo lines. Appl. Phys. Lett. 66, 2063–2065 (1995)

    Article  CAS  Google Scholar 

  11. K.N. Tu, C.C. Yeh, C.Y. Liu, C. Chen, Numerical simulation of current crowding phenomena and their effects on electromigration in very large scale integration interconnects. J. Appl. Phys. 76, 988–990. (2000)

    CAS  Google Scholar 

  12. E.C.C. Yeh, K.N. Tu, Numerical simulation of current crowding phenomena and their effects on electromigration in very large scale integration interconnects. J. Appl. Phys. 88, 5680–5686 (2000)

    Article  CAS  Google Scholar 

  13. H. Yasunaga, A. Natori, Electromigration on semiconductor surfaces. Surf. Sci. Rep. 15, 205–280 (1992)

    Article  Google Scholar 

  14. A.V. Latyshev, A.L. Aseev, A.B. Krasilnikov, S.I. Stenin, Transformations on Clean Si(111) stepped surface during sublimation. Surf. Sci. 213, 157–169 (1989)

    Article  CAS  Google Scholar 

  15. A. Yamanaka, K. Yagi, H. Yasunaga, Surface electromigration of metal atoms on Si(111) surface studied by UHV reflection electron microscopy. Ultramicroscopy 29, 161–167 (1989)

    Article  CAS  Google Scholar 

  16. Y. Homma, R. McClelland, H. Hibino, DC-resistive-heating-induced step bunching on Vicinal Si(111). Jpn. J. Appl. Phys. 29, 2254–2256 (1990)

    Article  Google Scholar 

  17. J.-J. Métois, and M. Audriffen, An experimental study of step dynamics under the influence of electromigration: Si(111). Int J Mod. Phys B 11, 3691 (1997)

    Article  Google Scholar 

  18. Y.-N. Yang, E.S. Fu, E.D. Williams, An STM study of current-induced step bunching on Si(111). Surf. Sci. 356, 101–111 (1996)

    Article  CAS  Google Scholar 

  19. C. Misbah, O. Pierre-Louis, Y. Saito, Crystal surfaces in and out of equilibrium: A modern view. Rev. Mod. Phys. 82, 981 (2010)

    Article  CAS  Google Scholar 

  20. M.F.G. Hedouin, P.J. Rous, Relationship between adatom-induced surface resistivity and the wind force for adatom electromigration: A layer Korringa-Kohn-Rostoker study. Phys. Rev. B 62, 8473 (2000)

    Article  CAS  Google Scholar 

  21. H. Ishida, Semiclassical derivation of the surface resistivity formula. Phys. Rev. B. 60, 4532–4534 (1999)

    Article  CAS  Google Scholar 

  22. T.N. Todorov, Spatial distribution of the electric current and field in atomic scale conductors. Philos. Mag. B 79, 1577–1590 (1999)

    CAS  Google Scholar 

  23. Z. Yang, M. Chsiev, M. Zwolak, Y.-C. Chen, M. Di Ventra, Role of heating and current-induced forces in the stability of atomic wires. Phys. Rev. B, 71, 041402R (2005)

    Article  Google Scholar 

  24. I. Matsuda, M. Ueno, T. Hirahara, R. Hobara, H. Morikawa, C.H. Liu, S. Hasegawa, Electrical resistance of a monatomic step on a crystal surface. Phys. Rev. Lett. 93(23), 236801 (2004)

    Article  Google Scholar 

  25. O. Bondarchuk, W.G. Cullen, M. Degawa, E.D. Williams, T. Bole, P.J. Rous, Biased surface fluctuations due to current stress. Phys. Rev. Lett. 99, 206801 (2007)

    Article  CAS  Google Scholar 

  26. J. Homoth, M. Wenderoth, T. Druga, L. Winking, R.G. Ulbrich, C.A. Bobisch, B. Weyers, A. Bannani, E. Zubkov, A.M. Bernhart, R.R. Kaspers, R. Möller, Electron transport on the nanoscale: Ballistic transmission and Ohm’s law. Nano Lett. 9, 1588–1592 (2009)

    Article  CAS  Google Scholar 

  27. H. Park, A.K.L. Lim, A.P. Alivisatos, J. Park, P.L. McEuen, Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999)

    Article  CAS  Google Scholar 

  28. G. Essen, M.S. Fuhrer, Break Junction monitoring. Appl. Phys. Lett. 87, 263101 (2005)

    Article  Google Scholar 

  29. T. Taychatanapat, K.I. Bolotin, F. Kuemmeth, D.C. Ralph, Imaging electromigration during the formation of break junctions. Nano Lett. 7(3), 652–656 (2007)

    Article  CAS  Google Scholar 

  30. S. Heinze, N.-P. Wang, J. Tersoff, Electromigration forces on ions in carbon nanotubes. Phys. Rev. Lett. 95, 186802 (2005)

    Article  CAS  Google Scholar 

  31. O. Pierre-Louis, Dynamic correlations of macroscopic quantities. Phys. Rev. E, 76, 062601 (2007)

    Article  Google Scholar 

  32. D. Dundas, E.J. McEniry, T.N. Todorov, Current-driven atomic waterwheels. Nat. Nanotechnol. 4, 99–102 (2009)

    Article  CAS  Google Scholar 

  33. H.-C. Jeong, E.D. Williams, Steps on surfaces: Experiment and theory. Surf. Sci. Rep. 34, 171–294 (1999)

    Article  CAS  Google Scholar 

  34. E.D. Williams, O. Bondarchuk, C.G. Tao, W. Yan, W.G. Cullen, P.J. Rous, T. Bole, Temporal step fluctuations on a conductor surface: Electromigration force, surface resistivity and low-frequency noise. New J. Phys. 9, 387 (2007)

    Article  Google Scholar 

  35. M. Rusanen, P. Kuhn, J. Krug, Kinetic Monte Carlo simulations of oscillatory shape evolution for electromigration-driven islands. Phys. Rev. B. 74, 245423 (2006)

    Article  Google Scholar 

  36. T. Sun, B. Yao, A.P. Warren, K. Barmak, M.F. Toney, R.E. Peale, K.R. Coffey, Dominant role of grain boundary scattering in the resistivity of nanometric Cu films. Phys. Rev. B, 79, 041402 (2009)

    Article  Google Scholar 

  37. J. Hoekstra, A.P. Sutton, T.N. Todorov, A. Horsfield, Electromigration of vacancies in copper. Phys. Rev. B 62, 8568–8571 (2000)

    Article  CAS  Google Scholar 

  38. P.J. Rous, Electromigration wind force at stepped Al surfaces. Phys. Rev. B59, 7719–7723 (1999)

    Google Scholar 

  39. P.J. Rous, Multiple-scattering theory of the surface resistivity of stepped Al surfaces. Phys. Rev. B 61, 8484–8488 (2000)

    Article  CAS  Google Scholar 

  40. O. Bondarchuk, D.B. Dougherty, M. Degawa, M. Constantin, C. Dasgupta, S. Das Sarma, Correlation Time for Step Structural Fluctuations. Phys. Rev. B. 71, 045426 (2005)

    Article  Google Scholar 

  41. C. Tao, T.J. Stasevich, T.L. Einstein, E.D. Williams, Step Fluctuations on Ag(111) surfaces with C60. Phys. Rev. B 73, 125436(1–7) (2006)

    Article  Google Scholar 

  42. A.A. Baski, H. Fuchs, Epitaxial growth of silver on mica as studied by AFM and STM. Surf. Sci. 313, 275 (1994)

    Article  CAS  Google Scholar 

  43. M. Giesen, C. Steimer, H. Ibach, What does one learn from equilibrium shapes of two-dimensional islands on surfaces? Surf. Sci. 471, 80–100 (2001)

    Article  CAS  Google Scholar 

  44. F. Mugele, A. Rettenberger, J. Boneberg, P. Leiderer, The influence of tip–sample interaction on step fluctuations on Ag(111). Surf. Sci. 400, 80–86 (1998)

    Article  CAS  Google Scholar 

  45. M. Giesen, Step, Island Dynamics at solid/vacuum and solid/liquid interfaces. Prog. Surf. Sci. 68, 1–153 (2001)

    Article  CAS  Google Scholar 

  46. C. Tao, W.G. Cullen, E.D. Williams, C. Dasgupta, Generalized survival in step fluctuations. Phys. Rev. E 76, 021601 (2007)

    Article  CAS  Google Scholar 

  47. T.J. Stasevich, H. Gebremariam, T.L. Einstein, M. Giesen, C. Steimer, H. Ibach, Low-temperature orientation dependence of step stiffness on 111 surfaces. Phys. Rev. B. 71, 245414 (2005)

    Article  Google Scholar 

  48. G.S. Bales, A. Zangwill, Morphological instability of a terrace edge during step-flow growth. Phys. Rev. B41(9), 5500–5508 (1990)

    Google Scholar 

  49. P.J. Rous, T.W. Bole, Temporal evolution of step-edge fluctuations under electromigration conditions. Phys. Rev. B 2007. 76, 125435 (1970)

    Article  Google Scholar 

  50. B.S. Verma, H.J. Juretschke, Strain dependence of the resistivity of silver films. J. Appl. Phys. 41, 4732–4735 (1970)

    Article  CAS  Google Scholar 

  51. R.A. Matula, Resistivity of Noble Metals. J. Phys. Chem Ref. Data 8, 1260 (1979)

    Article  Google Scholar 

  52. K. Thürmer, J. Reutt-Robey, E.D. Williams, A. Emundts, H. Bonzel, M. Uwaha, Step dynamics in crystal shape relaxation. Phys. Rev. Lett. 87, 186102–186104 (2001)

    Article  Google Scholar 

  53. J.-M. Wen, S.-L. Chang, J.W. Burnett, J.W. Evans, P.A. Thiel, Diffusion of large two-dimensional Ag Clusters on Ag(100). Phys. Rev. Lett. 73, 2591–2594 (1994)

    Article  CAS  Google Scholar 

  54. K. Morgenstern, G. Rosenfeld, B. Poelsema, G. Comsa, Brownian motion of vacancy islands on Ag(111). Phys. Rev. Lett. 74, 2058–2061 (1995)

    Article  CAS  Google Scholar 

  55. O. Pierre-Louis, T.L. Einstein, Electromigration of single layer clusters. Phys. Rev. B62, 13697–13706 (2000)

    Google Scholar 

  56. P. Kuhn, J. Krug, F. Hausser, A. Voigt, Complex shape evolution of electromigration-driven single-layer islands. Phys. Rev. Lett. 94(16) (2005)

    Google Scholar 

  57. F. Mehmood, A. Kara, T.S. Rahman, First principles study of the electronic and geometric structure of Cu(532). Surf. Sci. 600, 4501–4507 (2006)

    Article  CAS  Google Scholar 

  58. J. Ikonomov, K. Starbova, M. Giesen, Island coalescence and diffusion along kinked steps on Cu(001): evidence for a large kink Ehrlich-Schwoebel barrier. Surf. Sci. 601, 1403–1408 (2007)

    Article  CAS  Google Scholar 

  59. Y. Mo, W. Zhu, E. Kaxiras, Z.Y. Zhang, Electronic nature of step-edge barriers against adatom descent on transition-metal surfaces. Phys. Rev. Lett. 101, 216101 (2008)

    Article  Google Scholar 

  60. R.S. Sorbello, Residual Resistivity dipole in electron transport and electromigration. Phys. Rev. B23, 5119 (1981)

    Google Scholar 

  61. N.D. Lang, Resistance of atomic wires. Phys. Rev. B52, 5335–5342 (1995)

    Google Scholar 

  62. B.G. Briner, R.M. Feenstra, T.P. Chin, J.M. Woodal, Local transport properties of thin bismuth films studied by scanning tunneling potentiometry. Phys. Rev. B54, R5283–5286 (1996)

    Google Scholar 

  63. B. Binnig, H. Rohrer, Scanning tunneling microscopy – from birth to adolescence. Rev. Mod. Phys. 59, 615–625 (1987)

    Article  CAS  Google Scholar 

  64. C.F. Quate, The atomic force microscope as a tool for surface imaging. Surf. Sci. 299/300, 980 (1994)

    Article  Google Scholar 

  65. R. Yongsunthon, J. McCoy, E.D. Williams, Evaluation of MFM for quantification of electromigration processes. ULSI Metrol. Conf. Proc. 550(1), 630–634 (2001)

    CAS  Google Scholar 

  66. R. Yongsunthon, J. McCoy, E.D. Williams, Calibrated MFM Measurement of Current-carrying Lines. J. Vacuum Sci. Technol. 19(4), 1763–1768 (2001)

    Google Scholar 

  67. R.D. Gomez, A.O. Pak, A.J. Anderson, E.R. Burke, A.J. Leyendecker, I.D. Mayergoyz, Quantification of magnetic force microscopy images using combined electrostatic and magnetostatic imaging. J. Appl. Phys. 83, 6226–6228 (1998)

    Article  CAS  Google Scholar 

  68. R. Yongsunthon, A. Stanishevsky, J. McCoy, E.D. Williams, Observation of current crowding near fabricated voids in Au lines. Appl. Phys. Lett. 78, 2661–2663 (2001)

    Article  CAS  Google Scholar 

  69. E. Arzt, O. Kraft, W.D. Nix, J.E. Sanchez, Electromigration failure by shape change of voids in bamboo lines. J. Appl. Phys. 76, 1563–1571 (1994)

    Article  CAS  Google Scholar 

  70. B.J. Roth, N.G. Sepulveda, J.J.P. Wikswo, Using a magnetometer to image a two-dimensional current distribution. J. Appl. Phys. 65, 362–382 (1989)

    Article  Google Scholar 

  71. S. Chatraphorn, E.F. Fleet, F.C. Wellstood, L.A. Knauss, T.M. Elles, Scanning SQUID microscopy of integrated circuits. Appl. Phys. Lett. 2000, 2304–2306 (2000)

    Article  Google Scholar 

  72. J.J.P. Wikswo. The magnetic inverse problem for NDE in NATO ASI: SQUID Sensors: Fundamentals, fabrication and applications. 1996. Acquafredda di Maratea, Italy: NATO ASI Series

    Google Scholar 

  73. M.R. Gungor, D. Maroudas, Electromigration with current crowding. J. Appl. Phys. 85, 2233 (1999)

    Article  CAS  Google Scholar 

  74. X. Pang, A.M. Kriman, G.H. Bernstein, Electromigration in nanometer Al-Cu Interconnect Lines. J. Electrochem. Soc. 149, G103-G1.8 (2002)

    Article  CAS  Google Scholar 

  75. J. Krug, H.T. Dobbs, Current-Induced Faceting of Crystal Surfaces. Phys. Rev. Lett. 73, 1947–1950 (1994)

    Article  CAS  Google Scholar 

  76. O. Pierre-Louis, Local Electromigration Model for Crystal Surfaces. Phys. Rev. Lett. 96(13), 135901 (2006)

    Article  CAS  Google Scholar 

  77. R. Yongsunthon, E.D. Williams, A. Stanishevsky, P. Rous, J. Mccoy, R. Pego, Magnetic force microscopy signatures of defects in current-carrying lines. Mater. Res. Soc. Symp. Proc. 699, 107–112 (2002)

    CAS  Google Scholar 

  78. K.H. Bevan, H. Guo, E.D. Williams, Z.Y. Zhang, First-principles quantum transport theory of the enhanced wind force driving electromigration on Ag(111). Phys. Rev. B81 (23), 235416 (2010)

    Google Scholar 

  79. C. Tao, Doctoral Dissertation: Fluctuations on metal surfaces and molecule/metal interfaces, Department of Physics, University of Maryland: College Park, MD, 2007

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the University of Maryland NSF MRSEC under grant # DMR 05-20471, including use of the Shared Experimental Facilities. Infrastructure support is also provided by the UMD NanoCenter and CNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yongsunthon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yongsunthon, R., Tao, C., Rous, P., Williams, E. (2011). Surface Electromigration and Current Crowding. In: Michailov, M. (eds) Nanophenomena at Surfaces. Springer Series in Surface Sciences, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16510-8_5

Download citation

Publish with us

Policies and ethics