Skip to main content

Optimum Design of Balanced SAW Filters Using Multi-Objective Differential Evolution

  • Conference paper
Simulated Evolution and Learning (SEAL 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6457))

Included in the following conference series:

Abstract

Three Multi-Objective Differential Evolutions (MODEs) that differ in their selection schemes are applied to a real-world application, i.e., the multi-objective optimum design of the balanced Surface Acoustic Wave (SAW) filter used in cellular phones. In order to verify the optimality of the Pareto-optimal solutions obtained by the best MODE, those solutions are also compared with the solutions obtained by the weighted sum method. Besides, from the Principal Component Analysis (PCA) of the Pareto-optimal solutions, an obvious relationship between the objective function space and the design parameter space is disclosed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hashimoto, K.: Surface Acoustic Wave Devices in Telecommunications – Modeling and Simulation. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  2. Meier, M., Baier, T., Riha, G.: Miniaturization and advanced functionalities of SAW devices. IEEE Trans. on Microwave Theory and Techniques 49(2), 743–748 (2001)

    Article  Google Scholar 

  3. Goto, S., Kawakatsu, T.: Optimization of the SAW filter design by immune algorithm. In: Proc. of IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, pp. 600–603 (2004)

    Google Scholar 

  4. Meltaus, J., Hamalainen, P., Salomaa, M.M., Plessky, V.P.: Genetic optimization algorithms in the design of coupled SAW filters. In: Proc. of IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, pp. 1901–1904 (2004)

    Google Scholar 

  5. Tagawa, K., Matsuoka, M.: Optimum design of surface acoustic wave filters based on the Taguchi’s quality engineering with a memetic algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 292–301. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Tagawa, K., Kojima, N.: Multi-objective optimum design of DMS filters using robust engineering and genetic algorithm. In: Proc. of IEEE CEC, pp. 2208–2214 (2006)

    Google Scholar 

  7. Tagawa, K.: Multi-objective optimum design of balanced SAW filters using generalized differential evolution. WSEAS Trans. on System 8(8), 923–932 (2009)

    Google Scholar 

  8. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution – A Practical Approach to Global Optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  9. Kukkonen, S., Lampinen, J.: GDE3: The third evolution step of generalized differential evolution. In: Proc. of IEEE CEC, pp. 443–450 (2005)

    Google Scholar 

  10. Zitzler, E., et al.: Performance assessment of multiobjective optimizations: an analysis and review. IEEE Trans. on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

  11. Kojima, T., Suzuki, T.: Fundamental equations of electro-acoustic conversion for an interdigital surface-acoustic-wave transducer by using force factors. Japanese Journal of Applied Physics Supplement 31, 194–197 (1992)

    Article  Google Scholar 

  12. Bockelman, D.E., Eisenstadt, W.R.: Combined differential and common-mode scattering parameters: theory and simulation. IEEE Trans. on Microwave Theory and Techniques 43(7), 1530–1539 (1995)

    Article  Google Scholar 

  13. Deb, K., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  14. Zielinski, K., Laur, R.: Variants of differential evolution for multi-objective optimization. In: Proc. of IEEE Symposium on Computational Intelligence in Multicriteria Decision Making, pp. 91–98 (2007)

    Google Scholar 

  15. Pal, S., Das, S., Basak, A.: Design of time-modulated linear arrays with a multi-objective optimization approach. Progress In Electromagnetics Research B 23, 83–107 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tagawa, K., Sasaki, Y., Nakamura, H. (2010). Optimum Design of Balanced SAW Filters Using Multi-Objective Differential Evolution. In: Deb, K., et al. Simulated Evolution and Learning. SEAL 2010. Lecture Notes in Computer Science, vol 6457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17298-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17298-4_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17297-7

  • Online ISBN: 978-3-642-17298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics