Skip to main content

Imprinting, Inactivation and the Behavioural Genetics of the X Chromosome

  • Chapter
  • First Online:
Brain, Behavior and Epigenetics

Part of the book series: Epigenetics and Human Health ((EHH))

  • 1563 Accesses

Abstract

The X chromosome presents some unique features in the context of DNA modifications including methylation and histone deposition. In some ways, the patterns of epigenetic changes during the life cycle of the X chromosome resemble those affecting autosomal loci in parent-of-origin effects. Similarly, chromatin changes to the X chromosome of somatic cells may occur in response to the impact of external environmental factors. In addition to any imprinting, the X chromosome of placental mammals has the distinction of random inactivation in diploid females. The focus of this chapter is to examine what consequences these X-chromosomal modifications may have for human phenotypes and in particular that of behaviour. It is of particular interest in this context that, of the few loci escaping inactivation and expressed at higher levels in females, several are notable for their involvement in chromatin remodelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuhatzira L, Shemer R, Razin A (2009) MeCP2 involvement in the regulation of neuronal alpha-tubulin production. Hum Mol Genet 18:1415–1423

    Article  PubMed  CAS  Google Scholar 

  • Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW (1992) Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen receptor gene correlates with X chromosome inactivation. Am J Hum Genet 51:1229–1239

    PubMed  CAS  Google Scholar 

  • Amir RE, Van den Veyver IB, Schultz R, Malicki DM, Tran CQ, Dahle EJ, Philippi A, Timar L, Percy AK, Motil KJ, Lichtarge O, Smith EO, Glaze DG, Zoghbi HY (2000) Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann Neurol 47:670–679

    Article  PubMed  CAS  Google Scholar 

  • Amos-Landgraf JM, Cottle A, Plenge RM, Friez M, Schwartz CE, Longshore J, Willard HF (2006) X chromosome-inactivation patterns of 1, 005 phenotypically unaffected females. Am J Hum Genet 79:493–499

    Article  PubMed  CAS  Google Scholar 

  • Barr ML, Bertram EG (1949) A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163:676–677

    Article  PubMed  CAS  Google Scholar 

  • Baumann C, de la Fuente R (2009) ATRX marks the inactive X chromosome (Xi) in somatic cells and during imprinted X chromosome inactivation in trophoblast stem cells. Chromosoma 118:209–222

    Article  PubMed  Google Scholar 

  • Benjamin D, Van Bakel I, Craig I (2000) A novel expression based approach for assessing the inactivation status of human X-linked genes. Eur J Hum Genet 8:103–108

    Article  PubMed  CAS  Google Scholar 

  • Boumil RM, Ogawa Y, Sun BK, Huynh KD, Lee JT (2006) Differential methylation of Xite and CTCF sites in Tsix mirrors the pattern of X- inactivation choice mice. Mol Cell Biol 26:2109–2117

    Article  PubMed  CAS  Google Scholar 

  • Boyd Y, Fraser NJ (1990) Methylation patterns at the hypervariable X chromosome locus DXS255 (M27-BETA) correlates with X-inactivation status. Genomics 7:182–187

    Article  PubMed  CAS  Google Scholar 

  • Brown CJ, Robinson WP (2000) The causes and consequences of random and non-random X-chromosome inactivation in humans. Clin Genet 58:353–563

    Article  PubMed  CAS  Google Scholar 

  • Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404

    Article  PubMed  CAS  Google Scholar 

  • Carrel L, Cottle AA, Goglin KC, Willard HF (1999) A first-generation X inactivation profile of the human X chromosome. Proc Natl Acad Sci USA 96:14440–14444

    Article  PubMed  CAS  Google Scholar 

  • Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854

    Article  PubMed  CAS  Google Scholar 

  • Chahrour M, Jung SY, Shaw C, Zhou X, Wong STC, Qin J, Zoghbi HY (2008) MECP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–1229

    Article  PubMed  CAS  Google Scholar 

  • Coffee B, Zhang F, Warren ST, Reines D (1999) Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat Genet 22:98–101

    Article  PubMed  CAS  Google Scholar 

  • Coffee B, Zhang F, Ceman S, Warren ST, Reines D (2002) Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile x syndrome. Am J Hum Genet 71:923–932

    Article  PubMed  Google Scholar 

  • Craig IW (2007) The importance of stress and genetic variation in human aggression. Bioessays 29:227–236

    Article  PubMed  CAS  Google Scholar 

  • Craig IW, Halton K (2009) Genetics of human aggressive behaviour. Hum Genet 126:101–113

    Article  PubMed  Google Scholar 

  • Craig IW, Halton K (2010) The genetics of human aggressive behaviour. In: Encyclopedia of Life Sciences 2010, Wiley, Chichester http://www.els.net/ [DOI: 10.1002/9780470015902.a0022405]

    Google Scholar 

  • Craig IW, Harper E, Loat C (2004a) The genetic basis for sex differences in human behaviour: role of the sex chromosomes. Ann Hum Genet 68:269–284

    Article  PubMed  CAS  Google Scholar 

  • Craig IW, Mill J, Craig GM, Loat C, Schalkwyk LC (2004b) Application of micro-arrays to the analysis of the inactivation status of human X-linked genes expressed in lymphocytes. Eur J Hum Gen 12:639–646

    Article  CAS  Google Scholar 

  • Craig IW, Hawarth CMA, Plomin R (2009) Commentary on “A role for the X chromosome in sex differences in variability in general intelligence” (Johnson et al., 2009). Perspect Psychol Sci 4:615–621

    Article  Google Scholar 

  • Davies W, Isles A, Smith R, Burgoyne P, Wilkinson L (2005) A novel imprinted candidate gene for X-linked parent-of-origin effects on cognitive functioning in mice. Genet Res 86:236–236

    Google Scholar 

  • Dion V, Wilson JH (2009) Instability and chromatin structure of expanded trinucleotide repeats. Trends Genet 25:288–297

    Article  PubMed  CAS  Google Scholar 

  • Drewell RA, Goddard CJ, Thomas JO, Surani MA (2002) Methylation-dependent silencing at the H19 imprinting control region by MeCP2. Nucleic Acids Res 30:1139–1144

    Article  PubMed  CAS  Google Scholar 

  • Dulac C (2010) Brain function and functional plasticity. Nature 425:728–735

    Article  Google Scholar 

  • Eiges R, Urbach A, Malcov M, Frumkin T, Schwartz T, Amit A, Yaron Y, Eden A, Yanuka O, Benvenisty N, Ben-Yosef N (2007) Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1:568–577

    Article  PubMed  CAS  Google Scholar 

  • Filippova GN, Cheng MK, Moore JM, Truong J-P, Hu YJ, Di KN, Tsuchiya KD, Disteche CM (2005) Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev Cell 8:31–42

    Article  PubMed  CAS  Google Scholar 

  • Gartler SM, Riggs AD (1983) Mammalian X-chromosome inactivation. Annu Rev Genet 17:155–190

    Article  PubMed  CAS  Google Scholar 

  • Godler DE, Tassone F, Loesch ZL, Taylor AK, Gehling F, Hagerman RJ, Burgess T, Ganesamoorthy D, Hennerich D, Gordon L, Evans A, Chool KH, Slater HR (2010) Methylation of novel markers of fragile X alleles is inversely correlated with FMRP expression and FMR1 activation ratio. Hum Mol Genet 19:1618–1632

    Article  PubMed  CAS  Google Scholar 

  • Good CD, Lawrence K, Thomas NS, Price CJ, Ashburner J, Friston KJ, Frackowiak RSJ, Oreland L, Skuse DH (2003) Dosage sensitive X-linked locus influences the development of the amygdala and orbitofrontal cortex, and fear recognition in humans. Brain 126:1–16

    Article  Google Scholar 

  • Hagerman RJ (1995) Molecular and clinical correlations in fragile X syndrome. Ment Retard Dev Disabil Res Rev 1:276–280

    Article  Google Scholar 

  • Hagerman RJ (1996) Biomedical advances in developmental psychology: the case of fragile X syndrome. Dev Psychol 32:416–424

    Article  Google Scholar 

  • Hagerman PJ, Hagerman RJ (2004) The fragile-X premutation: a maturing perspective. Am J Hum Genet 74:805–816

    Article  PubMed  CAS  Google Scholar 

  • Hagerman RJ, Leehey M, Heinrichs W, Tassone F, Wilson R, Hills J, Grigsby J, Gage B, Hagerman PJ (2001) Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57:127–130

    PubMed  CAS  Google Scholar 

  • Heard E, Disteche CM (2006) Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 20:1848–1867

    Article  PubMed  CAS  Google Scholar 

  • Heard E, Clerc P, Avner P (1997) X-chromosome inactivation in mammals. Annu Rev Genet 31:571–610

    Article  PubMed  CAS  Google Scholar 

  • Heard E, Rougeulle C, Arnaud D, Avner P, Allis CD (2001) Methylation of Histone H3 at Lys-9 Is an early mark on the X chromosome during X inactivation. Cell 107:727–738

    Article  PubMed  CAS  Google Scholar 

  • Hedges LV, Nowell A (1995) Sex-differences in mental test-scores, variability, and numbers of high-scoring individuals. Science 269:41–45

    Article  PubMed  CAS  Google Scholar 

  • Henn W, Zang KD (1997) Mosaicism in Turner’s syndrome. Nature 390:569

    Article  PubMed  CAS  Google Scholar 

  • Hornstra IK, Nelson DL, Warren ST, Yang TP (1993) High resolution methylation analysis of the FMR1 gene trinucleotide repeat region in fragile X syndrome. Hum Mol Genet 2:1659–1665

    Article  PubMed  CAS  Google Scholar 

  • Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH, Whetstine JR, Bonni A, Roberts TM, Shi Y (2007) The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128:1077–1088

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  PubMed  CAS  Google Scholar 

  • Johnson W, Carothers A, Deary IJ (2008) Sex differences in variability in general intelligence: a new look at the old question. Perspect Psychol Sci 3:518–531

    Article  Google Scholar 

  • Johnston CM, Lovell FL, Leongamornlert DA, Stranger BE, Dermitzakis EY, Ross MT (2008) Large scale population study of human cell lines indicates that dosage compensation is virtually complete. PLoS Genet 4:0088–0098

    Article  CAS  Google Scholar 

  • Kernohan KD, Jiang Y, Tremblay DC, Bonvissuto AC, Eubanks JH, Mann MRW, Bérubé NG (2010) ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Dev Cell 18:191–202

    Article  PubMed  CAS  Google Scholar 

  • Ladd PD, Smith LE, Rabaia NA, Moore JM, Georges SA, Hansen RS, Hagerman RJ, Tassone F, Tapscot SJ, Filippova GN (2007) An antisense transcript spanning the CGG region of FMR1 is upregulated in permutation carriers but is silenced in full mutation individuals. Hum Mol Genet 16:3174–3187

    Article  PubMed  CAS  Google Scholar 

  • Laggerbauer B, Ostareck D, Keidel EM, Ostareck-Lederer A, Fischer U (2001) Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum Mol Genet 10:329–338

    Article  PubMed  CAS  Google Scholar 

  • Lawrence K, Jones A, Oreland L, Spektor D, Mandy W, Campbell R, Skuse D (2006) The development of mental state attributions in women with X- monosomy, and the role of monoamine oxidase B in the socio-cognitive phenotype. Cognition 102:84–100

    Article  PubMed  Google Scholar 

  • Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69:905–914

    Article  PubMed  CAS  Google Scholar 

  • Li ZZ, Zhang YY, Ku L, Wilkinson KD, Warren ST, Feng Y (2001) The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res 29:2276–2283

    Article  PubMed  CAS  Google Scholar 

  • Loat CS, Asbury K, Galsworthy MJ, Plomin R, Craig IW (2004) X inactivation as asource of behavioural differences in monozygotic female twins. Twin Res 7:54–61

    Article  PubMed  Google Scholar 

  • Loat CS, Craig GM, Plomin R, Craig IW (2006) Investigating the relationship between FMR1 allele length and cognitive ability in children: a subtle effect of the normal allele range on the normal ability range? Ann Hum Genet 70:555–565

    Article  PubMed  CAS  Google Scholar 

  • Loat CS, Curran S, Lewis CM, Abrahams B, Duvall J, Geschwind D, Bolton P, Craig IW (2008a) Methyl-CpG-binding protein (MECP2) polymorphisms and vulnerability to autism. Genes Brain Behav 7:754–760

    Article  PubMed  CAS  Google Scholar 

  • Loat CS, Haworth CMA, Plomin R, Craig IW (2008b) A model incorporating potential skewed X-inactivation in MZ girls suggests that X-linked QTLs exist for several social behaviours including Autism Spectrum Disorder. Ann Hum Genet 72:742–751

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (1998) X-Chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80:133–137

    Article  PubMed  CAS  Google Scholar 

  • Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, YiE S (2003) DNA methylation-related chromatin remodeling in activity-dependent Bdnf gene regulation. Science 302:890–893

    Article  PubMed  CAS  Google Scholar 

  • McRae AF, Matigian NA, Vadlamudi L, Mulley JC, Mowry B, Martin NG, Berkovic SF, Hayward NK, Visscher PM (2007) Replicated effects of sex and genotype on gene expression in human lymphoblastoid cell lines. Hum Mol Genet 16:364–373

    Article  PubMed  CAS  Google Scholar 

  • Mueller JL, Mahadevaiah SK, Park PJ, Warburton PE, Page DC, Turner JM (2008) The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat Genet 40:794–799

    Article  PubMed  CAS  Google Scholar 

  • Nagarajan RP, Hogart AR, Gwye Y, Martin MR, La Salle JM (2006) Reduced MECP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 1:e1–e11

    Article  PubMed  Google Scholar 

  • Nan X, Meehan RR, Bird A (1993) Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 21:4886–4892

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Hou J, Maclean A, Nasir J, Lafuente MJ, Shu X, Kriaucionis S, Bird A (2007) Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proc Nat Acad Sci USA 104:2709–2714

    Article  PubMed  CAS  Google Scholar 

  • Naumann A, Hochstein N, Weber S, Fanning E, Doerfler W (2009) A distinct DNA-methylation boundary in the 5′ – upstream sequence of the fmr1 promoter binds nuclear proteins and is lost in fragile X syndrome. Am J Hum Genet 85:606–616

    Article  PubMed  CAS  Google Scholar 

  • Ng K, Purllirsch D, Loeb M, Wutz A (2007) Xist and the order of silencing. EMBO Rep 8:34–38

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DK, Disteche CM (2006) Dosage compensation of the active X chromosome in mammals. Nat Genet 38:47–53

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell WT, Warren ST (2002) A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci 25:315–338

    Article  PubMed  Google Scholar 

  • Oberlé I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A, Boue J, Bertheas M, Mandel J (1991) Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252:1097–1102

    Article  Google Scholar 

  • Ogawa Y, Lee JT (2003) Xite, X-inactivation intergeneic transcriptional elements that regulate the probability of choice. Mol Cell 11:731–734

    Article  PubMed  CAS  Google Scholar 

  • Okamoto I, Heard E (2006) The dynamics of imprinted X inactivation during preimplantation development in mice. Cytogenet Genome Res 113:318–324

    Article  PubMed  CAS  Google Scholar 

  • Pietrobono R, Tabolacci E, Zalfa F, Zito I, Terracciano A, Moscato U, Bagni C, Oostra B, Chiurazzi P, Neri G (2005) Molecular dissection of the events leading to inactivation of the FMR1 gene. Hum Mol Genet 14:267–277

    Article  PubMed  CAS  Google Scholar 

  • Pinsonneault JK, Papp AC, Sadée W (2006) Allelic mRNA expression of X-linked monoamine oxidase a (MAOA) in human brain: dissection of epigenetic and genetic factors. Hum Mol Genet 15:2636–2649

    Article  PubMed  CAS  Google Scholar 

  • Plenge RM, Hendrich BD, Schwartz C, Arena JF, Naumova A, Sapienza C, Winter RM, Willard HF (1997) A promoter mutation in the XIST gene in two unrelated families with skewed X-chromosome inactivation. Nat Genet 17:353–356

    Article  PubMed  CAS  Google Scholar 

  • Popova BC, Takashi T, Takagi N, Brockdorff N, Nesterova TB (2006) Attenuated spread of X-inactivation in an X;autosome translocation. Proc Natl Acad Sci USA 103:7706–7711

    Article  PubMed  CAS  Google Scholar 

  • Puck JM (1998) The timing of twinning: more insights from x inactivation. Am J Hum Genet 63:327–328

    Article  PubMed  CAS  Google Scholar 

  • Pullirsch D, Härtel R, Kishimoto H, Leeb M, Steiner G, Wutz A (2010) The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development 137:935–943

    Article  PubMed  CAS  Google Scholar 

  • Raefski AS, O’Neill MJ (2005) Identification of a cluster of X-linked imprinted genes in mice. Nat Genet 37:620–624

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, Platzer M, Howell GR, Burrows C, Bird CP et al (2005) The DNA sequence of the human X chromosome. Nature 434:325–337

    Article  PubMed  CAS  Google Scholar 

  • Saveliev A, Everett C, Sharpe T, Webster Z, Festenstein R (2003) DNA triplet repeats mediate heterochromatinprotein-1-sensitive variegated gene silencing. Nature 422:909–913

    Article  PubMed  CAS  Google Scholar 

  • Sengupta AK, Ohhata T, Wutz A (2008) X chromosome inactivation. In: Tost J (ed) Epigenetics. Caister Academic Press, Norfolk, VA, pp 273–302

    Google Scholar 

  • Shahbazian MD, Zoghbi HY (2002) Rett syndrome and MeCP2: linking epigenetics and neuronal function. Am J Hum Genet 71:1259–1272

    Article  PubMed  CAS  Google Scholar 

  • Sharp A, Robinson D, Jacobs P (2000) Age and tissue specific variation of X chromosome inactivation ratios in normal women. Hum Genet 107:343–349

    Article  PubMed  CAS  Google Scholar 

  • Shumay E, Fowler JS (2010) Identification and characterization of putative methylation targets in the MAOA locus using bioinformatic approaches. Epigenetics 5:325–342

    Article  PubMed  CAS  Google Scholar 

  • Skuse DH, James RS, Bishop DVM, Coppin B, Dalton P, Aamodt-Leeper G, Bacarese-Hamilton M, Creswell C, McGurk R, Jacobs PA (1997) Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387:705–708

    Article  PubMed  CAS  Google Scholar 

  • Smeets HJM, Smits APT, Verheij CE, Theelen JPG, Willemsen R, Vandeburgt I, Hoogeveen AT, Oosterwijk JC, Oostra BA (1995) Normal phenotype in 2 brothers with a full FMR1 mutation. Hum Mol Genet 4:2103–2108

    Article  PubMed  CAS  Google Scholar 

  • Stefani G, Fraser CE, Darnell JC, Darnell RB (2004) Fragile X mental retardation protein is associated with translating polyribosomes in neuronal cells. J Neurosci 24:7272–7276

    Article  PubMed  CAS  Google Scholar 

  • Sudbrak R, Wieczorek G, Nuber UA, Mann W, Kirchner R, Erdogan F, Brown CJ, Wöhrle D, Sterk P, Kalscheuer VM, Berger W, Lehrach H, Ropers HH (2001) X chromosome-specific cDNA arrays: identification of genes that escape from X-inactivation and other applications. Hum Mol Genet 10:77–83

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, Warren ST (1992) DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet 1:397–400

    Article  PubMed  CAS  Google Scholar 

  • Swanberg SE, Nagarajan RP, Peddada S, Yasui DH, LaSalle JM (2009) Reciprocal co-regulation of EGR2 and MECP2 is disrupted in Rett syndrome and autism. Hum Mol Genet 18:525–534

    Article  PubMed  CAS  Google Scholar 

  • Talebizadeh Z, Simon SD, Butler MG (2006) X chromosome gene expression in human tissues: male and female comparisons. Genomics 88:675–681

    Article  PubMed  CAS  Google Scholar 

  • Tiberio G (1994) MZ Female twins discordant for X-linked diseases: a review. Acta Genet Med Gemellol 43:207–214

    PubMed  CAS  Google Scholar 

  • Turner G, Webb T, Wake S, Robinson H (1996) Prevalence of fragile X syndrome. Am J Med Genet 64:196–197

    Article  PubMed  CAS  Google Scholar 

  • Wöhrle D, Salat U, Gläser D, Mücke J, Meisel-Stosiek M, Schindler D, Vogel W, Steinbach P (1998) Unusual mutations in high functioning fragile X males: apparent instability of expanded unmethylated CGG repeats. J Med Genet 35:103–111

    Article  PubMed  Google Scholar 

  • Xu J, Burgoyne PS, Arnold AP (2002) Sex differences in sex chromosome gene expression in mouse brain. Hum Mol Genet 11:1409–1419

    Article  PubMed  CAS  Google Scholar 

  • Yasui DH, Peddada S, Bieda MC, Vallero RO, Hogart A, Nagarajan RP, Thatcher KN, Farnham PJ, LaSalle JM (2007) Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci USA 104:19416–19421

    Article  PubMed  CAS  Google Scholar 

  • Youings SA, Murray A, Dennis N, Ennis S, Lewis C, McKechnie N, Pound M, Sharrock A, Jacobs P (2000) FRAXA and FRAXE: the results of a five year survey. J Med Genet 37:415–421

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian W. Craig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Craig, I.W. (2011). Imprinting, Inactivation and the Behavioural Genetics of the X Chromosome. In: Petronis, A., Mill, J. (eds) Brain, Behavior and Epigenetics. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17426-1_7

Download citation

Publish with us

Policies and ethics