Skip to main content

Randomized Belief-Space Replanning in Partially-Observable Continuous Spaces

  • Chapter
Algorithmic Foundations of Robotics IX

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 68))

Abstract

We present a sample-based replanning strategy for driving partially-observable, high-dimensional robotic systems to a desired goal. At each time step, it uses forward simulation of randomly-sampled open-loop controls to construct a belief-space search tree rooted at its current belief state. Then, it executes the action at the root that leads to the best node in the tree. As a node quality metric we use Monte Carlo simulation to estimate the likelihood of success under the QMDP belief-space feedback policy, which encourages the robot to take information-gathering actions as needed to reach the goal. The technique is demonstrated on target-finding and localization examples in up to 5D state spacess.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alterovitz, R., Simeon, T., Goldberg, K.: The stochastic motion roadmap: A sampling framework for planning with markov motion uncertainty. In: Robotics: Science and Systems ( June 2007)

    Google Scholar 

  2. Barraquand, J., Latombe, J.-C.: Robot motion planning: A distributed representation approach. Int. J. Rob. Res. 10(6), 628–649 (1991)

    Article  Google Scholar 

  3. Berg, J.V.D., Abbeel, P., Goldberg, K.: Lqg-mp: Optimized path planning for robots with motion uncertainty and imperfect state information. In: Proc. Robotics: Science and Systems (2010)

    Google Scholar 

  4. Burns, B., Brock, O.: Sampling-based motion planning with sensing uncertainty. In: Proc. IEEE Int. Conf. on Robotics and Automation (2007)

    Google Scholar 

  5. Doucet, A., Godsill, S., Andrieu, C.: On sequential monte carlo sampling methods for bayesian filtering. Statistics and Computing 10(3), 197–208 (2000)

    Article  Google Scholar 

  6. du Toit, N., Burdick, J.: Robotic motion planning in dynamic, cluttered, uncertain environments. In: IEEE Int. Conf. on Robotics and Automation (2010)

    Google Scholar 

  7. Guibas, L.J., Hsu, D., Kurniawati, H., Rehman, E.: Bounded uncertainty roadmaps for path planning. In: Workshop on the Algorithmic Foundations of Robotics, Guanajuato, Mexico (2008)

    Google Scholar 

  8. He, R., Brunskill, E., Roy, N.: Puma: Planning under uncertainty with macro-actions. In: Proc. Twenty-Fourth Conf. on Artificial Intelligence (AAAI) (2010)

    Google Scholar 

  9. Hsiao, K., Lozano-Perez, T., Kaelbling, L.P.: Robust belief-based execution of manipulation programs. In: Eighth International Workshop on the Algorithmic Foundations of Robotics (WAFR) (2008)

    Google Scholar 

  10. Huang, Y., Gupta, K.: Collision-probability constrained prm for a manipulator with base pose uncertainty. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Piscataway, NJ, USA, 2009, pp. 1426–1432. IEEE Press, Los Alamitos (2009)

    Google Scholar 

  11. Kavraki, L.E., Svetska, P., Latombe, J.-C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. and Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  12. Kearns, M., Mansour, Y., Ng, A.Y.: Approximate planning in large pomdps via reusable trajectories. In: Advances in Neural Information Processing Systems, vol. 12. MIT Press, Cambridge (2000)

    Google Scholar 

  13. Kurniawati, H., Du, Y., Hsu, D., Lee, W.: Motion planning under uncertainty for robotic tasks with long time horizons. In: Proc. Int. Symp. on Robotics Research (2009)

    Google Scholar 

  14. Kurniawati, H., Hsu, D., Lee, W.: Sarsop: Efficient point-based pomdp planning by approximating optimally reachable belief spaces. In: Proc. Robotics: Science and Systems (2008)

    Google Scholar 

  15. LaValle, S.M., Kuffner Jr., J.J.: Rapidly-exploring random trees: progress and prospects. In: WAFR (2000)

    Google Scholar 

  16. Littman, M., Cassandra, A.R., Kaelbling, L.P.: Learning policies for partially observable environments: Scaling up. In: Proc. 12th Int. Conf. on Machine Learning, pp. 362–370. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  17. Littman, M.L., Goldsmith, J., Mundhenk, M.: The computational complexity of probabilistic planning. Journal of Artificial Intelligence Research 9, 1–36 (1998)

    MATH  MathSciNet  Google Scholar 

  18. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime algorithm for pomdps. In: International Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico, pp. 1025–1032 (August 2003)

    Google Scholar 

  19. Platt, R., Tedrake, R., Kaelbling, L., Lozano-Perez, T.: Belief space planning assuming maximum likelihood observations. In: Proc. Robotics: Science and Systems (2010)

    Google Scholar 

  20. Porta, J.M., Vlassis, N., Spaan, M.T.J., Poupart, P.: Point-based value iteration for continuous pomdps. Journal of Machine Learning Research 7, 2329–2367 (2006)

    MathSciNet  Google Scholar 

  21. Prentice, S., Roy, N.: The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance. The International Journal of Robotics Research 28(11-12), 1448–1465 (2009)

    Article  Google Scholar 

  22. Thrun, S.: Monte carlo pomdps. In: Advances in Neural Information Processing Systems 12 (NIPS-1999), MIT Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hauser, K. (2010). Randomized Belief-Space Replanning in Partially-Observable Continuous Spaces. In: Hsu, D., Isler, V., Latombe, JC., Lin, M.C. (eds) Algorithmic Foundations of Robotics IX. Springer Tracts in Advanced Robotics, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17452-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17452-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17451-3

  • Online ISBN: 978-3-642-17452-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics