Skip to main content

A Multi-class Object Classifier Using Boosted Gaussian Mixture Model

  • Conference paper
Neural Information Processing. Theory and Algorithms (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6443))

Included in the following conference series:

Abstract

We propose a new object classification model, which is applied to a computer-vision-based traffic surveillance system. The main issue in this paper is to recognize various objects on a road such as vehicles, pedestrians and unknown backgrounds. In order to achieve robust classification performance against translation and scale variation of the objects, we propose new C1-like features which modify the conventional C1 features in the Hierarchical MAX model to get the computational efficiency. Also, we develop a new adaptively boosted Gaussian mixture model to build a classifier for multi-class objects recognition in real road environments. Experimental results show the excellence of the proposed model for multi-class object recognition and can be successfully used for constructing a traffic surveillance system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wijnhoven, R., De With, P.H.N.: 3D Wire-frame Object-modeling Experiments for Video Surveillance. In: Proc. of 27th Symp. Inform. Theory in the Benelux, pp. 101–108 (2006)

    Google Scholar 

  2. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust Object Recognition with Cortex-like Mechanisms. Trans. on Pattern Analysis and Machine Intelligence (PAMI) 29(3), 411–426 (2007)

    Article  Google Scholar 

  3. Wijnhoven, R., De With, P.H.N.: Patch-based Experiments with Object Classification in Video Surveillance. In: Blanc-Talon, J., et al. (eds.) ACIVS 2007. LNCS, vol. 4678, pp. 285–296. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Woo, J.-W., Lim, Y.-C., Lee, M.: Obstacle Categorization Based on Hybridizing Global and Local Features. In: Chan, J.H. (ed.) ICONIP 2009, Part II. LNCS, vol. 5864, pp. 1–10. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. J. Data Min. Knowl. Discov. 2, 121–167 (1998)

    Article  Google Scholar 

  6. Scherrer, B.: Gaussian Mixture Model Classifiers (2007)

    Google Scholar 

  7. Schapire, R.E.: The Strength of Weak Learnability. Machine Learning 5, 197–227 (1990)

    Google Scholar 

  8. Freund, Y., Schapire, R.E.: A Short Introduction to Boosting. The Japanese Society for Artificial Intelligence 14(5), 771–780 (1999)

    Google Scholar 

  9. Riesenhuber, M., Poggio, T.: Hierarchical Models of Object Recognition in Cortex. J. Neurosci. 2, 1019–1025 (1999)

    Google Scholar 

  10. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. J. of the Royal Statistical Society 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  11.  Blimes, J. A.: A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical Report ICSI-TR-97-021 (1997)

    Google Scholar 

  12. Verbeek, J., Vlassis, N., Krose, B.: Efficient Greedy Learning of Gaussian Mixture Models. Neural Computation 15, 469–485 (2003)

    Article  MATH  Google Scholar 

  13. Center for Biological & Computational Learning, MIT, http://cbcl.mit.edu

  14. Computational Vision Lab, Caltech, http://www.vision.caltech.edu

  15. Daimler Pedestrian Detection Benchmark Data Set, http://www.gavrila.net

  16. Artificial Brain Research Lab, Kyungpook National University, http://abr.knu.ac.kr/ABR_surveillance_DB.html

  17. Fergus, R., Perona, P., Zisserman, A.: Object Class Recognition by Unsupervised Scale-Invariant Learning. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 264–271 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, W., Lee, M. (2010). A Multi-class Object Classifier Using Boosted Gaussian Mixture Model. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Theory and Algorithms. ICONIP 2010. Lecture Notes in Computer Science, vol 6443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17537-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17537-4_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17536-7

  • Online ISBN: 978-3-642-17537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics