Skip to main content

Novel Perspectives on Cardiac Pacemaker Regulation: Role of the Coupled Function of Sarcolemmal and Intracellular Proteins

  • Chapter
  • First Online:
Heart Rate and Rhythm

Abstract

Recent experimental and theoretical studies demonstrate that the sinoatrial node cells (SANCs), the primary pacemaker cells of heart, operate as a complex system of functionally coupled sarcolemmal and intracellular proteins. The proteins of this system dynamically (beat-to-beat) interact throughout the entire pacemaker cycle via membrane voltage and local subsarcolemmal Ca2+ changes. Furthermore, functions of the sarcolemmal (SL) electrogenic proteins and sarcoplasmic reticulum (SR) Ca2+ cycling proteins are coupled and regulated enzymatically via Ca2+-, PKA-, and CaMKII-dependent protein phosphorylation. The system is not only robust (i.e., fail-safe within wide parameter range), but simultaneously flexible, because the autonomic neural modulation of the beating rate, via G protein-coupled receptor (GPCR) signaling, acts upon the very same regulatory factors (i.e., the coupling factors, Ca2+, PKA, and CaMKII) that ensure and regulate robust system function in the basal state. This chapter summarizes the experimental and theoretical evidences for this novel pacemaker concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bers DM. Excitation-contraction coupling and cardiac contractile force. 2nd ed. Norwell, MA: Kluwer Academic; 2001.

    Google Scholar 

  2. Bogdanov KY, Maltsev VA, Vinogradova TM, Lyashkov AE, Spurgeon HA, Stern MD, et al. Membrane potential fluctuations resulting from submembrane Ca2+ releases in rabbit sinoatrial nodal cells impart an exponential phase to the late diastolic depolarization that controls their chronotropic state. Circ Res. 2006;99:979–87.

    Article  PubMed  CAS  Google Scholar 

  3. Bogdanov KY, Vinogradova TM, Lakatta EG. Sinoatrial nodal cell ryanodine receptor and Na+-Ca2+ exchanger: molecular partners in pacemaker regulation. Circ Res. 2001;88:1254–8.

    Article  PubMed  CAS  Google Scholar 

  4. Bucchi A, Baruscotti M, Robinson RB, DiFrancesco D. If-dependent modulation of pacemaker rate mediated by cAMP in the presence of ryanodine in rabbit sino-atrial node cells. J Mol Cell Cardiol. 2003;35:905–13.

    Article  PubMed  CAS  Google Scholar 

  5. Bucchi A, Baruscotti M, Robinson RB, DiFrancesco D. Modulation of rate by autonomic agonists in SAN cells involves changes in diastolic depolarization and the pacemaker current. J Mol Cell Cardiol. 2007;43:39–48.

    Article  PubMed  CAS  Google Scholar 

  6. Chen B, Wu Y, Mohler PJ, Anderson ME, Song LS. Local control of Ca2+-induced Ca2+ release in mouse sinoatrial node cells. J Mol Cell Cardiol. 2009;47:706–15.

    Article  PubMed  CAS  Google Scholar 

  7. DiFrancesco D. The contribution of the ‘pacemaker’ current (if) to generation of spontaneous activity in rabbit sino-atrial node myocytes. J Physiol. 1991;434:23–40.

    PubMed  CAS  Google Scholar 

  8. Guo J, Ono K, Noma A. A sustained inward current activated at the diastolic potential range in rabbit sino-atrial node cells. J Physiol. 1995;483(Pt 1):1–13.

    PubMed  CAS  Google Scholar 

  9. Honjo H, Boyett MR, Kodama I, Toyama J. Correlation between electrical activity and the size of rabbit sino-atrial node cells. J Physiol. 1996;496(Pt 3):795–808.

    PubMed  CAS  Google Scholar 

  10. Huser J, Blatter LA, Lipsius SL. Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol. 2000;524(Pt 2):415–22.

    Article  PubMed  CAS  Google Scholar 

  11. Janczewski AM, Lakatta EG. Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea-pig ventricular myocytes. J Physiol. 1993;471:343–63.

    PubMed  CAS  Google Scholar 

  12. Joung B, Tang L, Maruyama M, Han S, Chen Z, Stucky M, et al. Intracellular calcium dynamics and acceleration of sinus rhythm by beta-adrenergic stimulation. Circulation. 2009;119:788–96.

    Article  PubMed  CAS  Google Scholar 

  13. Ju YK, Allen DG. Intracellular calcium and Na+-Ca2+ exchange current in isolated toad pacemaker cells. J Physiol. 1998;508(Pt 1):153–66.

    PubMed  CAS  Google Scholar 

  14. Ju YK, Allen DG. The distribution of calcium in toad cardiac pacemaker cells during spontaneous firing. Pflugers Arch. 2000;441:219–27.

    Article  PubMed  CAS  Google Scholar 

  15. Ju YK, Chu Y, Chaulet H, Lai D, Gervasio OL, Graham RM, et al. Store-operated Ca2+ influx and expression of TRPC genes in mouse sinoatrial node. Circ Res. 2007;100:1605–14.

    Article  PubMed  CAS  Google Scholar 

  16. Lakatta EG, DiFrancesco D. What keeps us ticking: a funny current, a calcium clock, or both? J Mol Cell Cardiol. 2009;47:157–70.

    Article  PubMed  CAS  Google Scholar 

  17. Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res. 2010;106:659–73.

    Article  PubMed  CAS  Google Scholar 

  18. Lakatta EG, Vinogradova T, Lyashkov A, Sirenko S, Zhu W, Ruknudin A, et al. The integration of spontaneous intracellular Ca2+ cycling and surface membrane ion channel activation entrains normal automaticity in cells of the heart’s pacemaker. Ann NY Acad Sci. 2006;1080:178–206.

    Article  PubMed  CAS  Google Scholar 

  19. Li J, Qu J, Nathan RD. Ionic basis of ryanodine’s negative chronotropic effect on pacemaker cells isolated from the sinoatrial node. Am J Physiol. 1997;273:H2481–9.

    PubMed  CAS  Google Scholar 

  20. Lipsius SL, Huser J, Blatter LA. Intracellular Ca2+ release sparks atrial pacemaker activity. News Physiol Sci. 2001;16:101–6.

    PubMed  CAS  Google Scholar 

  21. Lyashkov AE, Juhaszova M, Dobrzynski H, Vinogradova TM, Maltsev VA, Juhasz O, et al. Calcium cycling protein density and functional importance to automaticity of isolated sinoatrial nodal cells are independent of cell size. Circ Res. 2007;100:1723–31.

    Article  PubMed  CAS  Google Scholar 

  22. Lyashkov AE, Vinogradova TM, Zahanich I, Li Y, Younes A, Nuss HB, et al. Cholinergic receptor signaling modulates spontaneous firing of sinoatrial nodal cells via integrated effects on PKA-dependent Ca2+ cycling and IKACh. Am J Physiol Heart Circ Physiol. 2009;297:H949–59.

    Article  PubMed  CAS  Google Scholar 

  23. Maltsev VA, Lakatta EG. Dynamic interactions of an intracellular Ca2+ clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function. Cardiovasc Res. 2008;77:274–84.

    Article  PubMed  CAS  Google Scholar 

  24. Maltsev VA, Lakatta EG. A novel quantitative explanation for autonomic modulation of cardiac pacemaker cell automaticity via a dynamic system of sarcolemmal and intracellular proteins. Am J Physiol Heart Circ Physiol. 2010;298:H2010–H2023.

    Article  PubMed  CAS  Google Scholar 

  25. Maltsev VA, Lakatta EG. Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model. Am J Physiol Heart Circ Physiol. 2009;296:H594–615.

    Article  PubMed  CAS  Google Scholar 

  26. Maltsev VA, Vinogradova TM, Bogdanov KY, Lakatta EG, Stern MD. Diastolic calcium release controls the beating rate of rabbit sinoatrial node cells: numerical modeling of the coupling process. Biophys J. 2004;86:2596–605.

    Article  PubMed  CAS  Google Scholar 

  27. Maltsev VA, Vinogradova TM, Lakatta EG. The emergence of a general theory of the initiation and strength of the heartbeat. J Pharmacol Sci. 2006;100:338–69.

    Article  PubMed  CAS  Google Scholar 

  28. Maltsev VA et al. Engineered biological pacemakers (U.S. Provisional Patent Application No. 61/180, 491). Fed Regist. 2009;74(199):53268.

    Google Scholar 

  29. Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88:919–82.

    Article  PubMed  CAS  Google Scholar 

  30. Mattick P, Parrington J, Odia E, Simpson A, Collins T, Terrar D. Ca2+-stimulated adenylyl cyclase isoform AC1 is preferentially expressed in guinea-pig sino-atrial node cells and modulates the If pacemaker current. J Physiol. 2007;582:1195–203.

    Article  PubMed  CAS  Google Scholar 

  31. Maylie J, Morad M, Weiss J. A study of pace-maker potential in rabbit sino-atrial node: measurement of potassium activity under voltage-clamp conditions. J Physiol. 1981;311:161–78.

    PubMed  CAS  Google Scholar 

  32. Musa H, Lei M, Honjo H, Jones SA, Dobrzynski H, Lancaster MK, et al. Heterogeneous expression of Ca2+ handling proteins in rabbit sinoatrial node. J Histochem Cytochem. 2002;50:311–24.

    Article  PubMed  CAS  Google Scholar 

  33. Noble D. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature. 1960;188:495–7.

    Article  CAS  Google Scholar 

  34. Petit-Jacques J, Bois P, Bescond J, Lenfant J. Mechanism of muscarinic control of the high-threshold calcium current in rabbit sino-atrial node myocytes. Pflugers Arch. 1993;423:21–7.

    Article  PubMed  CAS  Google Scholar 

  35. Rigg L, Heath BM, Cui Y, Terrar DA. Localisation and functional significance of ryanodine receptors during beta-adrenoceptor stimulation in the guinea-pig sino-atrial node. Cardiovasc Res. 2000;48:254–64.

    Article  PubMed  CAS  Google Scholar 

  36. Rigg L, Terrar DA. Possible role of calcium release from the sarcoplasmic reticulum in pacemaking in guinea-pig sino-atrial node. Exp Physiol. 1996;81:877–80.

    PubMed  CAS  Google Scholar 

  37. Rubenstein DS, Lipsius SL. Mechanisms of automaticity in subsidiary pacemakers from cat right atrium. Circ Res. 1989;64:648–57.

    PubMed  CAS  Google Scholar 

  38. Sanders L, Rakovic S, Lowe M, Mattick PA, Terrar DA. Fundamental importance of Na+-Ca2+ exchange for the pacemaking mechanism in guinea-pig sino-atrial node. J Physiol. 2006;571:639–49.

    Article  PubMed  CAS  Google Scholar 

  39. Sirenko S, Li Y, Yang D, Lukyanenko Y, Lakatta EG, Vinogradova TM. Basal phosphorylation of Ca2+ cycling proteins by both PKA and CAMKII is required for robust generation of local subsarcolemmal Ca2+ releases to drive sinoatrial node cell automaticity. Circulation. 2008;118 Suppl 2:S346.

    Google Scholar 

  40. Tohse N. Calcium-sensitive delayed rectifier potassium current in guinea pig ventricular cells. Am J Physiol. 1990;258:H1200–7.

    PubMed  CAS  Google Scholar 

  41. van Borren MM, Verkerk AO, Wilders R, Hajji N, Zegers JG, Bourier J, et al. Effects of muscarinic receptor stimulation on Ca2+ transient, cAMP production and pacemaker frequency of rabbit sinoatrial node cells. Basic Res Cardiol. 2010;105:73–87.

    Article  PubMed  CAS  Google Scholar 

  42. Vinogradova TM, Bogdanov KY, Lakatta EG. beta-Adrenergic stimulation modulates ryanodine receptor Ca2+ release during diastolic depolarization to accelerate pacemaker activity in rabbit sinoatrial nodal cells. Circ Res. 2002;90:73–9.

    Article  PubMed  CAS  Google Scholar 

  43. Vinogradova TM, Brochet DX, Sirenko SG, Lyashkov AE, Maltsev VA, Yang D, et al. Sarcoplasmic reticulum (SR) Ca2+ refilling kinetics controls the period of local subsarcolemmal Ca2+ releases (LCR) and the spontaneous beating rate of sinoatrial node cells (SANC). Biophys J Suppl. 2007;2007:31a (Abstract).

    Google Scholar 

  44. Vinogradova TM, Lakatta EG. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels. J Mol Cell Cardiol. 2009;47:456–74.

    Article  PubMed  CAS  Google Scholar 

  45. Vinogradova TM, Lyashkov AE, Zhu W, Ruknudin AM, Sirenko S, Yang D, et al. High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac pacemaker cells. Circ Res. 2006;98:505–14.

    Article  PubMed  CAS  Google Scholar 

  46. Vinogradova TM, Ruknudin AM, Zhu W, Lyashkov AE, Volkova M, Boheler KR, et al. High basal cAMP content markedly elevates PKA-dependent protein phosphorylation and sustains spontaneous beating in rabbit sinoatrial nodal pacemaker cells (SANC). Biophys J. 2006;90:155a (Abstract).

    Google Scholar 

  47. Vinogradova TM, Sirenko S, Lyashkov AE, Younes A, Li Y, Zhu W, et al. Constitutive phosphodiesterase activity restricts spontaneous beating rate of cardiac pacemaker cells by suppressing local Ca2+ releases. Circ Res. 2008;102:761–9.

    Article  PubMed  CAS  Google Scholar 

  48. Vinogradova TM, Zhou YY, Bogdanov KY, Yang D, Kuschel M, Cheng H, et al. Sinoatrial node pacemaker activity requires Ca2+/calmodulin-dependent protein kinase II activation. Circ Res. 2000;87:760–7.

    PubMed  CAS  Google Scholar 

  49. Vinogradova TM, Zhou YY, Maltsev V, Lyashkov A, Stern M, Lakatta EG. Rhythmic ryanodine receptor Ca2+ releases during diastolic depolarization of sinoatrial pacemaker cells do not require membrane depolarization. Circ Res. 2004;94:802–9.

    Article  PubMed  CAS  Google Scholar 

  50. Wilders R. Computer modelling of the sinoatrial node. Med Biol Eng Comput. 2007;45:189–207.

    Article  PubMed  Google Scholar 

  51. Wu Y, Gao Z, Chen B, Koval OM, Singh MV, Guan X, et al. Calmodulin kinase II is required for fight or flight sinoatrial node physiology. Proc Natl Acad Sci USA. 2009;106:5972–7.

    Article  PubMed  CAS  Google Scholar 

  52. Younes A, Lyashkov AE, Graham D, Sheydina A, Volkova MV, Mitsak M, et al. Ca2+-stimulated basal adenylyl cyclase activity localization in membrane lipid microdomains of cardiac sinoatrial nodal pacemaker cells. J Biol Chem. 2008;283:14461–8.

    Article  PubMed  CAS  Google Scholar 

  53. Zhou Z, Lipsius SL. Na+-Ca2+ exchange current in latent pacemaker cells isolated from cat right atrium. J Physiol. 1993;466:263–85.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported entirely by the Intramural Research Program of the NIH, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Maltsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maltsev, V.A., Vinogradova, T.M., Lakatta, E.G. (2011). Novel Perspectives on Cardiac Pacemaker Regulation: Role of the Coupled Function of Sarcolemmal and Intracellular Proteins. In: Tripathi, O., Ravens, U., Sanguinetti, M. (eds) Heart Rate and Rhythm. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17575-6_4

Download citation

Publish with us

Policies and ethics