Skip to main content

A Geographic Location-Based Security Mechanism for Intelligent Vehicular Networks

  • Conference paper
Intelligent Computing and Information Science (ICICIS 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 135))

Abstract

In Intelligent Vehicular Networks, featured as car-to-car and car-to-infrastructure wireless communication, most applications need important location information or credential information. We address a location-based encryption method that not only ensures messages confidentiality but also authenticates identity and location of communication peers. The authentication of location means that a message can only decrypted by the receiver which is “physically” present inside a decryption region specified by locations, and is moving at a specific speed, acceleration and at a specific time period. A secret key is generated by converting location, time and mobility information (such as speed and acceleration) into a unique number. The determination of the decryption region is addressed in two steps: predicting and updating. The proposed method evaluated by simulations is efficient and secure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yan, G., Olariu, S.: An efficient geographic location-based security mechanism for vehicular ad hoc networks. In: Proceedings of the 2009 IEEE International Symposium on Trust, Security and Privacy for Pervasive Applications (TSP 2009), October 12-14 (2009)

    Google Scholar 

  2. Denning, D., MacDoran, P.: Location-based authentication: Grounding cyberspace for better security. Computer Fraud and Security 1996(2), 12–16 (1996)

    Article  Google Scholar 

  3. Scott, L., Denning, D.E.: Location based encryption technique and some of its applications. In: Proceedings of Institute of Navigation National Technical Meeting 2003, Anaheim, CA, January 22-24, pp. 734–740 (2003)

    Google Scholar 

  4. Al-Fuqaha, A., Al-Ibrahim, O.: Geo-encryption protocol for mobile networks. Comput. Commun. 30(11-12), 2510–2517 (2007)

    Article  Google Scholar 

  5. Open source, Simulation of urban mobility, http://sumo.sourceforge.net

  6. Yan, G., Ibrahim, K., Weigle, M.C.: Vehicular network simulators. In: Olariu, S., Weigle, M.C. (eds.) Vehicular Networks: From Theory to Practice. Chapman & Hall/CRC (2009)

    Google Scholar 

  7. Yan, G., Lin, J., Rawat, D.B., Enyart, J.C.: The role of network and mobility simulators in evaluating vehicular networks. In: Proceedings of The International Conference on Intelligent Computing and Information Science (ICICIS 2011), Chongqing, China, January 8-9 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, G., Lin, J., Rawat, D.B., Yang, W. (2011). A Geographic Location-Based Security Mechanism for Intelligent Vehicular Networks. In: Chen, R. (eds) Intelligent Computing and Information Science. ICICIS 2011. Communications in Computer and Information Science, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18134-4_110

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18134-4_110

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18133-7

  • Online ISBN: 978-3-642-18134-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics