Skip to main content

Abstract

Humanity and human intelligence are considered to be derived from the large human brain; therefore brain size is regarded as a relevant and interesting parameter. This chapter covers brain size in an evolutionary perspective. Such a starting point of course has an inherent limitation: attention is only paid to overall brain size, and not to the size of brain subsystems. Nevertheless, overall brain size is an interesting parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allman J, McLaughlin T, Hakeem A (1993) Brain weight and life-span in primate species. Proc Natl Acad Sci [USA] 90:118–122

    CAS  Google Scholar 

  • Armstrong E (1983) Relative brain size and metabolism in mammals. Science 220:1302–1304

    CAS  PubMed  Google Scholar 

  • Armstrong E (1985) Relative brain size in monkeys and prosimians. Am J Phys Anthropol 66:263–273

    CAS  PubMed  Google Scholar 

  • Armstrong E, Bergeron R (1985) Relative brain size and metabolism in birds. Brain Behav Evol 26:141–143

    CAS  PubMed  Google Scholar 

  • Baron G, Jolicoeur P (1980) Brain structure in Chiroptera: some multivariate trends. Evolution 34:386–393

    Google Scholar 

  • Bartels H (1982) Metabolic rate of mammals equals the 0.75 power of their body weight? Exp Biol Med 7:1–11

    Google Scholar 

  • Barton RA, Purvis A, Harvey PH (1995) Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Philos Trans R Soc Lond Biol 348:381–392

    CAS  PubMed  Google Scholar 

  • Bauchot R, Stephan H (1966) Données nouvelles sur l’encéphalisation des insectivores et des prosimiens. Mammalia 30:160–196

    Google Scholar 

  • Bauchot R, Platel R, Ridet JM (1976) Brain-body weight relationships in Selachii. Copeia 2:3–75

    Google Scholar 

  • Bauchot R, Thireau M, Diagne M (1983) Relations pondérales encéphalo-somatiques interspécifiques chez les amphibiens Anoures. Bull Mus Natl Hist Nat Paris 4:383–398

    Google Scholar 

  • Bauchot ML, Ridet JM, Diagne M, Bauchot R (1989a) Encephalization in Gobioidei (Teleostei). Jpn J Ichthyol 36:63–74

    Google Scholar 

  • Bauchot R, Randall JE, Ridet JM, Bauchot ML (1989b) Encephalisation in tropical Teleost fishes and comparison with their mode of life. J Hirnforsch 30:645–669

    CAS  PubMed  Google Scholar 

  • Bauchot R, Ridet JM, Bauchot ML (1989c) The brain organization of butterflyfishes. Environm Biol Fishes 25:205–219

    Google Scholar 

  • Bennett PM, Harvey PH. (1985a) Relative brain size and ecology in birds. J Zool [London] 207:151–169

    Google Scholar 

  • Bennett PM, Harvey PH (1985b) Brain size, development and metabolism in birds and mammals. J Zool [London] 207:491–509

    Google Scholar 

  • Bhatnagar HP, Frahm HD, Stephan H (1990) The megachiropteran pineal organ: a comparative mophological and volumetric investigation with special emphasis on the remarkably large pineal of Dobsonia praedatrix. J Anat 168:143–166

    CAS  PubMed  Google Scholar 

  • Bronson RT (1979) Brain weight-body weight scaling in breeds of dogs and cats. Brain Behav Evol 16:227–236

    CAS  PubMed  Google Scholar 

  • Brummelkamp R (1939) Das Wachstum der Gehirnmasse mit kleine Cephalisierungssprünge (sog. V2-Sprüngen) bei den Rodentiern. Acta Neerl Morphol 2:188–194

    Google Scholar 

  • Caldwell DK, Caldwell M (1966) Epimeletic (care-giving) behavior in Cetacea. In: Norris KS (ed) Whales, dolphins and porpoises. University of California Press, Berkeley, pp 677–717

    Google Scholar 

  • Clutton-Brock TH, Harvey PH (1980) Primates, brains and ecology. J Zool 190:309–323

    Google Scholar 

  • Cobb S (1965) Brain size. Arch Neurol 12:555–561

    CAS  PubMed  Google Scholar 

  • Connor RC, Smolker RA, Richards AF (1992) Two levels of alliance formation among male bottlenose dolphins (Tursiops sp.). Proc Natl Acad Sci [USA] 89:987–990

    CAS  Google Scholar 

  • Count FW (1947) Brain and body weight in man: their antecedents in growth and evolution. Ann NY Acad Sci 46:993–1122

    Google Scholar 

  • Crandall LS (1964) The management of wild mammals in captivity. University of Chicago Press, Chicago

    Google Scholar 

  • Crile G, Quiring DP (1940) A record of the body weight and certain organ and gland weights of 3690 animals. Ohio J Sci 40:219–259

    Google Scholar 

  • Cuvier G (1805) Leçons d’anatomie comparée. Tome III:77–81

    Google Scholar 

  • Diamond MC, Scheibel AB, Murphy GMJ, Harvey T (1985) On the brain of a scientist: Albert Einstein. Exp Neurol 88:198–204

    CAS  PubMed  Google Scholar 

  • Dobson GP, Headrick JP (1995) Bioenergetic scaling: metabolic design and body-size constraints in mammals. Proc Natl Acad Sci [USA] 92:7317–7321

    CAS  Google Scholar 

  • Dubois E (1897) Sur le rapport du poids de l’encéphale avec la grandeur du corps chez mammifères. Bull Soc Anthropol Paris 8:337–376

    Google Scholar 

  • Dunbar R (1992) Neocortex size as a constraint on group size in primates. J Hum Evol 20:469–493

    Google Scholar 

  • Ebinger P, Wächtler K, Stähler S (1983) Allometrical studies in the brain of Cyclostomes. J Hirnforsch 24:545–550

    CAS  PubMed  Google Scholar 

  • Eisenberg JF (1981) The mammalian radiations An analysis of trends in evolution, adaptation and behavior. University of Chicago Press, Chicago

    Google Scholar 

  • Eisenberg JF, Wilson D (1978) Relative brain size and feeding strategies in the Chiroptera. Evolution 32:740–751

    Google Scholar 

  • Eisenberg JF, Wilson DE (1981) Relative brain size and demographic stategies in Didelphid marsupials. Am Naturalist 118:1–15

    Google Scholar 

  • Elias H, Schwartz D (1969) Surface areas of the cerebral cortex of mammals determined by stereological methods. Science 166:111–113

    CAS  PubMed  Google Scholar 

  • Elliot Smith G (1898) The brain in the Edentata. Trans Linnean Soc London Ser 2 (Zoology) 7:277–394

    Google Scholar 

  • Frahm HD, Stephan H, Stephan M (1982) Comparison of brain structure volumes in Insectivora and Primates. I. Neocortex. J Hirnforsch 23:375–389

    CAS  PubMed  Google Scholar 

  • Gardner BT, Gardner RA (1989) Chimp-language wars. Science 252:1046

    Google Scholar 

  • Gibson KR, Ingold T (1993) Tools, language and cognition in human evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Gihr M, Pilleri G (1969) Hirn-Körpergewichts-Beziehungen bei Cetaceen. Invest Cetacea 1:109–126

    Google Scholar 

  • Gingerich PD (1983) Rates of evolution: effect of time and temporal scaling. Science 2222:159–161

    Google Scholar 

  • Gittleman JL (1986) Carnivore brain size, behavioral ecology and phylogeny. J Mammalogy 67:23–26

    Google Scholar 

  • Gittleman JL (1994) Female brain size and parental care in carnivores. Proc Natl Acad Sci [USA] 91:5495–5497

    CAS  Google Scholar 

  • Goodman M, Tagle DA, Fitch DHA et al. (1990) Primate evolution at the DNA level and a classification of Hominoids. J Mol Evol 30:260–266

    CAS  PubMed  Google Scholar 

  • Graur D, Hide WA, Zharkikh A, Li WH (1992) The biochemical phylogeny of guinea-pigs and gundis, and the paraphyly of the order rodentia. Comp Biochem Physiol B Comp Biochem 101:495–498

    CAS  Google Scholar 

  • Haarmann K (1975) Morphologische und histologische Untersuchungen am Neocortex von Boviden (Antilopinae, Cephalopinae) und Traguliden mit bemerkungen zur Evolutionshöhe. J Hirnforsch 16:93–116

    CAS  PubMed  Google Scholar 

  • Haarmann K, Oboussier H. (1972) Morphologische und quantitative Neocortexuntersuchungen bei Boviden, ein Beitrag zur Phylogenie dieser Familie. II. Formen geringen Körpergewichts (3kg–25kg) aus den Subfamilien Cephalophinae und Antilopinae. Mitt Hamburg Zool Mus Inst 68:231–269

    Google Scholar 

  • Hafner MS, Hafner JC (1984) Brain size, adaptation and heterochrony in Geomyoid rodents. Evolution 38:1088–1098

    Google Scholar 

  • Haidane JBS (1949) Suggestion as to a quantitative measurement of rates of evolution. Evolution 3:51–56

    Google Scholar 

  • Hansemann D (1899) Ãœber das Gehirn von Hermann v. Helmholtz. Z Psychol Physiol Sinnesorg 20:1–15

    Google Scholar 

  • Harvey PH, Bennett PM (1983) Brain size, energetics, ecology and life history patterns. Nature 306:314–315

    CAS  PubMed  Google Scholar 

  • Harvey PH, Clutton-Brock TH (1985) Life history variation in primates. Evolution 39:559–581

    Google Scholar 

  • Harvey PH, Krebs JR (1990) Comparing brains. Science 249:140–145

    CAS  PubMed  Google Scholar 

  • Haug H (1987) Brain sizes, surfaces and neuronal sizes of the cortex cerebri. A stereological investigation of man and his variability and a comparison with some mammals (Primates, whales, Marsupialia, Insectivores and one elephant). Am J Anat 180:126–142

    CAS  PubMed  Google Scholar 

  • Hay RL, Leakey MD (1982) The fossil footprints of Laetoli. Sci Am 246(2):38–45

    Google Scholar 

  • Hayssen V, Lacy RC (1985) Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comp Biochem Physiol 81A:741–754

    Google Scholar 

  • Hofman MA (1982) Encephalization in mammals in relation to the size of the cerebral cortex. Brain Behav Evol 20:84–96

    CAS  PubMed  Google Scholar 

  • Hofman MA (1983a) Energy metabolism, brain size and longevity in mammals. Q Rev Biol 58:495–512

    CAS  PubMed  Google Scholar 

  • Hofman MA (1983b) Encephalization in Hominids: evidence for the model of punctuationalism. Brain Behav Evol 22:102–117

    CAS  PubMed  Google Scholar 

  • Hofman MA (1989) On the evolution and geometry of the brain in mammals. Progr Neurobiol 32:137–158

    CAS  Google Scholar 

  • Hofman MA (1993) Encephalization and the evolution of longevity in mammals. J Evol Biol 6:209–227

    Google Scholar 

  • Holloway RL (1983) Human brain evolution: a search for units, models and synthesis. Can J Anthropol 3:215–230

    Google Scholar 

  • Holloway RL, LaCoste-Lareymondie MC (1982) Brain endocast assymetry in Pongids and Hominids: some preliminary findings on the paleontology of cerebral dominance. Am J Phys Anthropol 58:108–110

    Google Scholar 

  • Hopson JA (1979) Paleoneurology. In: Gans C, Northcurr RG, Ulinski P (eds) Biology of the reptilia, volume 9. Academic Press, London, pp 39–146

    Google Scholar 

  • Jerison HJ (1969) Brain evolution and dinosaur brains. Am Naturalist 103:575–588

    Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic Press, New York

    Google Scholar 

  • Jerison HJ (1988) The evolutionary biology of intelligence: afterthoughts. In: Jerison HJ, Jerison I (eds) Intelligence and evolutionary biology. Springer-Verlag, Berlin Heidelberg New York, pp 447–466

    Google Scholar 

  • Jerison HJ (1994) Evolution of the brain. In: Zaidel D (ed) Neuropsychology. Academic Press, London, pp 53–82

    Google Scholar 

  • Jones ML (1979) Longevity of mammals in captivity. Int Zoo News, Apr/May: 16-26

    Google Scholar 

  • Jürgens KD, Prothero JW (1987) Scaling of maximal lifespan in bats. Comp Biochem Physiol 88A:361–367

    Google Scholar 

  • Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27:511–541

    CAS  PubMed  Google Scholar 

  • Kojima T (1951) On the brain of the sperm whale (Physeter catadon). Sci Rep Whales Res Inst Tokyo 6:49–72

    Google Scholar 

  • Kortlandt A (1972) New perspectives on ape and human evolution. Stichting voor Psychobiologie, Amsterdam

    Google Scholar 

  • Kraus G, Pilleri G (1969) Quantitative Untersuchungen über die Grosshirnrinde der Cetaceen. Inv Cetacea 1:127–150

    Google Scholar 

  • Kretschmann HJ (1966) Ãœber die Cerebralisation eines Nestflüchters (Acomys cahirinus dimidiatus Cretschmar 1826) im Vergleich mit Nesthockern (Albinomaus, Apodemus sylvaticus Linaeus, 1758 und Albinoratte). Gegenbaurs Morphol Jahrb 109:376–410

    Google Scholar 

  • Kruska D (1973) Cerebralisation, Hirnevolution und domestikationbedingte Hirngrössenänderungen innerhalb der Ordnung Perissodactyla Owen, 1848 und ein Vergleich mit der Ordnung Artiodactyla Owen, 1848. Z Zool Syst Evol Forsch 11:81–103

    Google Scholar 

  • Kruska D (1982) Hirngrösseänderungen bei Tylopoden während der Stammesgeschichte und in der Domestikation. Verh Dtsch Zool Ges 75:173–183

    Google Scholar 

  • Kruska D (1988) Mammalian domestication and its effects on brain structure and behavior. In: Jerison HJ, Jerison I (eds) Intelligence and evolutionary biology. Springer-Verlag, Berlin Heidelberg New York, pp 211–250

    Google Scholar 

  • Kruska D, Röhrs M (1974) Comparative-quantitative investigations on brains of feral pigs from the Galapagos Islands and of European domestic pigs. Z Anat Entw Gesch 144:61–73

    CAS  Google Scholar 

  • Lapicque L, Girard P (1905) Poids de l’encéphale en fontion du poids du corps chez les oiseaux. C R Soc Biol 57:665–668

    Google Scholar 

  • Leigh SR (1992) Cranial capacity evolution in Homo erectus and early Homo sapiens. Am J Phys Anthropol 87:1–13

    CAS  PubMed  Google Scholar 

  • Lernen C (1980) Relationship between relative brain size and climbing ability in Peromyscus. J Mammalogy 61:360–364

    Google Scholar 

  • Lindstedt SL, Boyce MS. (1985) Seasonality, fasting endurance, and body size in mammals. Am Naturalist 125:873–878

    Google Scholar 

  • Lovejoy CO (1988) Evolution of human walking. Sci Am 259(5):82–89

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press

    Google Scholar 

  • Mace GM, Harvey PH, Clutton-Brock TH (1980) Is brain size an ecological variable? Trends Neurosci 3:193–196

    Google Scholar 

  • Mace GM, Clutton-Brock TH, Harvey PH (1981) Brain size and ecology in small mammals. J Zool 193:333–354

    Google Scholar 

  • Mangold-Wirz K (1966) Cerebralisation und Ontogenesemodus bei Eutherien. Acta Anat 63:449–508

    CAS  PubMed  Google Scholar 

  • Martin RD (1981) Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293:57–60

    CAS  PubMed  Google Scholar 

  • McGrew WC (1992) Chimpanzee material culture: implications for human evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • McNab BK (1969) The economics of temperature regulation in neotropical bats. Comp Biochem Physiol 31:227–268

    CAS  PubMed  Google Scholar 

  • McNab BK (1988) Complications inherent in scaling the basal rate of metabolism in mammals. Q Rev Biol 63:25–54

    CAS  PubMed  Google Scholar 

  • Meddis R (1983) The evolution of sleep. In: Mayes A (ed) Sleep mechanisms and functions. Van Nostrand Reinhold, London, pp 57–106

    Google Scholar 

  • Möller H (1973) Zur Evolutionshöhe des Marsupialiagehirns. Zool Jahrb Anat 91:434–448

    Google Scholar 

  • Myagkov NA (1991) The brain sizes of living Elasmobranchii as their organization level indicator. J Hirnforsch 32:553–561

    CAS  PubMed  Google Scholar 

  • Northcutt RG (1989) Brain variation and phylogenetic trends in elasmobranch fishes. J Exp Zool Suppl 2:83–100

    CAS  PubMed  Google Scholar 

  • Novacek MJ (1992) Mammalian phylogeny: shaking the tree. Nature 356:121–125

    CAS  PubMed  Google Scholar 

  • Oboussier H (1966) Das Grosshirnfurchenbild als Merkmal der Evolution. Untersuchungen an Boviden II. Mitt Hamburg Zool Mus Inst 63:159–182

    Google Scholar 

  • Oboussier H (1967) Das Grosshirnfurchenbild als Hinweis auf die Verwandtschaftbeziehungen der heutigen Afrikanischen Bovidae. Acta Anat 68:577–596

    CAS  PubMed  Google Scholar 

  • Oboussier H (1971) Quantitative und morphologische Studien am Hirn der Bovidae, ein Beitrag zur Kenntnis der Phylogenie. Gegenbaurs Morphol Jahrb 117:162–168

    Google Scholar 

  • Oboussier H (1972) Morphologische und quantitative Neo-cortexuntersuchungen bei Boviden, ein Beitrag zur Phylogenie dieser Familie. III. Formen grossen Körpergewicht (über 75 kg). Mitt Hamburg Zool Mus Inst 68:271–292

    Google Scholar 

  • Oboussier H, Möller G (1971) Zur Kenntnes des Gehirns der Giraffidae (Pecora, Artiodactyla, Mammalia) — ein Vergleich der Neocortex-Oberflächegrösse. Z Säugetierknd 36:291–296

    Google Scholar 

  • Passingham RE (1979) Brain size and intelligence in man. Brain Behav Evol 16:253–270

    CAS  PubMed  Google Scholar 

  • Pianka ER (1970) On r-and K-selection. Am Naturalist 104:592–597

    Google Scholar 

  • Pilleri G (1959a) Beiträge zur vergleichenden Morphologie des Nagetiergehirnes. 1. Sciuromorpha. Acta Anat 38 (Suppl): 1–42

    Google Scholar 

  • Pilleri G (1959b) Beiträge zur vergleichenden Morphologie des Nagetiergehirnes. 2. Hystricomorpha. Acta Anat 38 (Suppl):43–95

    Google Scholar 

  • Pilleri G (1959c) Beiträge zur vergleichenden Morphologie des Nagetiergehirnes. 3. Das Gehirn der Wassernager (Castor canadensis, Ondatra zibethica, Myocastor coypus). Acta Anat 38 (Suppl):96–123

    Google Scholar 

  • Pilleri G (1960a) Beiträge zur vergleichenden Morphologie des Nagetiergehirnes. 4. Zentralnervensystem, Körperorgane und stammesgeschichtliche Verwandtschaft der Aplodontia rufa Rafinesque (Rodentia, Aplodontoidea). Acta Anat 40 (Suppl):5–35

    Google Scholar 

  • Pilleri G (1960b) Beiträge zur vergleichenden Morphologie des Nagetiergehirnes. 5. Vergleichend-morphologische Untersuchungen über das Zentralnervensystem nearktischer Sciuromorpha und Bemerkungen zum Problem Hirnform und Taxonomie. Acta Anat 40 (Suppl):36–68

    Google Scholar 

  • Pilleri G (1960c) Beiträge zur vergleichenden Morphologie des Nagetiergehirnes. 6. Materialien zur vergleichenden Anatomie des Gehirns der Myomorpha. Acta Anat 40 (Suppl):69–88

    Google Scholar 

  • Pilleri G, Gihr M (1970) The central nervous system of the Mysticete and Odontocete whales. Invest Cetacea 2:890–128

    Google Scholar 

  • Pirlot P (1980) Quantitative composition and histological features of the brain in two South American edentates. J Hirnforsch 21:1–9

    CAS  PubMed  Google Scholar 

  • Pirlot P (1981) A quantitative approach to the marsupial brain in an eco-ethological perspective. Rev Can Biol 40:229–250

    CAS  PubMed  Google Scholar 

  • Pirlot P (1987) Contemporary brain morphology in ecological and ethological perspectives. J Hirnforsch 28:145–211

    CAS  PubMed  Google Scholar 

  • Pirlot P, Jolicoeur P (1982) Correlations between major brain regions in Chiroptera. Brain Behav Evol 20:172–181

    CAS  PubMed  Google Scholar 

  • Pirlot P, Kamiya T (1982) Relative size of brain and brain components in three gliding placentals (Dermoptera: Rodentia). Can J Zool 60:565–572

    Google Scholar 

  • Pirlot P, Kamiya T (1983) Quantitative brain organisation in anteaters (Edentata-Tubilidentata). J Hirnforsch 24:677–689

    CAS  PubMed  Google Scholar 

  • Pirlot P, Kamiya T (1985) Qualitative and quantitative brain morphology in the sirenian Dujong dujon. Z Zool Syst Evol Forsch 23:147–155

    Google Scholar 

  • Pirlot P, Nelson J (1978) Volumetric analysis of Monotreme brains. Austr Zool 20:171–179

    Google Scholar 

  • Pirlot P, Stephan H (1970) Encephalization in Chiroptera. Can J Zool 48:433–444

    Google Scholar 

  • Platel R (1976) Analyse volumétrique comparée des principales subdivisions encéphaliques ches les Reptiles Sauriens. J Hirnforsch 17:513–537

    CAS  PubMed  Google Scholar 

  • Platel R (1979) Brain weight-body weight relationships. In: Gans C, Northcurr RG, Ulinski P (eds) Biology of the reptilia, volume 9. Academic Press, London, pp 147–171

    Google Scholar 

  • Platel R (1989) L’Encéphalisation chez le Tuatara de nouvelle-Zélande Sphenodon punctatus Gray (Lepidosauria, Sphenodonta). Étude quantifiée des principales subdivisions encéphaliques. J Hirnforsch 30:325–337

    CAS  PubMed  Google Scholar 

  • Platel R, Delfini C (1981) L’encéphalisation ches la myxine (Myxine glutinosa L). Analyse quantifiée des principales subdivisions encéhaliques. Cah Biol Marine 22:407–430

    Google Scholar 

  • Platel R, Delfini C (1986) L’Encéphalisation chez la Lamproie marine, Petromyzon marinus (L.). Analyse quantifiée des principales subdivisions encéphaliques. J Hirnforsch 27:279–293

    CAS  PubMed  Google Scholar 

  • Platel R, Vesselkin NP (1986) Analyse des allometries encéphalo-somatiques chez l’adulte de Lampetra fluviatilis. Cybium 10:143–153

    Google Scholar 

  • Platel R, Vesselkin NP (1989) Etude comparé de l’encéphalisation chez 3 espèces de Pétromyzonidae (Agnatha): Petromyzon marinus, Lampetra fluviatilis et Lampetra planeri. J Hirnforsch 30:23–32

    CAS  PubMed  Google Scholar 

  • Platel R, Ridet JM, Bauchot R, Diagne M (1977) L’organisation encéphalique chez Amia, Lepisosteus et Polypterus: Morphologie et analyse quantitative compareés. J Hirnforsch 18:69–73

    CAS  PubMed  Google Scholar 

  • Pohlenz-Kleffner W (1969) Vergleichende Untersuchungen zur Evolution der Gehirne von Edentaten. Hirnform und Hirnfurchen. Z Zool Syst Evol Forsch 7:181–208

    Google Scholar 

  • Portmann A (1947) Étude sur la cérébralisation chez les oiseaux. II. Les indices intracérébraux. Alauda 15:1–15

    Google Scholar 

  • Prothero JW, Jürgens KD (1987) Scaling of maximal lifespan in mammals. In: Woodhead A, Thompson KH (eds) Evolution of longevity in animals. Plenum, New York, pp 49–74

    Google Scholar 

  • Radinsky L (1981) Brain evolution in extinct South American ungulates. Brain Behav Evol 18:169–187

    CAS  PubMed  Google Scholar 

  • Reep RL, O’Shea TJ (1990) Regional brain morphometry and lissencephaly in the Sirenia. Brain Behav Evol 35:185–194

    CAS  PubMed  Google Scholar 

  • Reep RL, Johnson JI, Switzer RC, Welker WI (1989) Manatee cerebral cortex: cytoarchitecture of the frontal region in Trichechus manatus latirostris. Brain Behav Evol 34:365–386

    CAS  PubMed  Google Scholar 

  • Rehkämper GK, Frahm HD, Zilles J (1991a) Quantitative development of brain and brain structures in birds (Galliformes and Passeriformes) compared to that in mammals (Insectivores and Primates). Brain Behav Evol 37:125–143

    PubMed  Google Scholar 

  • Rehkämper G, Schuchmann KL, Schleicher A, Zilles K (1991b) Encephalization in hummingbirds (Trochilidae). Brain Behav Evol 37:85–91

    PubMed  Google Scholar 

  • Ridet JM (1982) Analyse quantitative de l’encéphale des Téléostéens: Charactères évolutifs et adaptifs de l’encéphalisation. Thesis, University of Paris

    Google Scholar 

  • Ridet JM, Bauchot R (1990a) Analyse quantitative de l’encéphale chez les Téléostéens caractères évolutifs et adaptifs de l’encéphalisation. I. Généralités et analyse globale. J Hirnforsch 31:51–63

    CAS  PubMed  Google Scholar 

  • Ridet JM, Bauchot R (1990b) Analyse quantitative de l’encéphale des Téléostéens caractères évolutifs et adaptifs de l’encéphalisation. II. Les grandes subdivisions encéphaliques. J Hirnforsch 31:433–458

    CAS  PubMed  Google Scholar 

  • Ridet JM, Bauchot R, Diagne M, Platel R (1977) Croissance ontogénétique et phylogénétique de l’encéphale des Téléostéens. Cah Biol Mar 18:163–176

    Google Scholar 

  • Robin ED (1973) The evolutionary advantages of being stupid. Perspect Biol Med 16:369–380

    CAS  PubMed  Google Scholar 

  • Röhrs M (1966) Vergleichende Untersuchungen zur Evolution der Gehirne von Edentaten. I. Hirngewicht-Körpergewicht. Z Zool Syst Evol Forsch 4:196–207

    Google Scholar 

  • Röhrs M, Kruska D (1969) Des Einfluss der Domestikation auf das Zentralnervensystem und Verhalten von Schweinen. Dtsch Tierarzt Wochenschr 75:514–518

    Google Scholar 

  • Ronnefeld U (1970) Morphologische und quantitative Neo-cortexuntersuchungen bei Boviden, ein Beitrag zur Phylogenie dieser Familie. I. Formen mittlerer Körpergewicht (25kg–75kg). Gegenbaurs Morphol Jahrb 115:163–230

    CAS  PubMed  Google Scholar 

  • Roth G, Blanke J, Ohle M (1995) Brain size and morphology in miniaturized plethodontid salamanders. Brain Behav Evol 45:84–95

    CAS  PubMed  Google Scholar 

  • Russell DA (1972) Ostrich dinosaurs from the Late Cretaceous of Western Canada. Can J Earth Sci 9:375–402

    Google Scholar 

  • Sacher GA (1975) Maturation and longevity in relation to cranial capacity in hominid evolution. In: Tuttle RH (ed) Primate functional morphology and evolution. Mouton, The Hague, pp 417–441

    Google Scholar 

  • Savage-Rumbaugh ES, Pate JL, Lawson J, Smith ST, Rosenbaum S (1983) Can a chimpanzee make a statement? J Exp Psychol Gen 112:457–492

    Google Scholar 

  • Schultz W (1969) Zur Kenntnis des Hallstromhundes (Canis hallstromi Thoughton, 1957). Zool Anz 183:47–72

    Google Scholar 

  • Sheppey K, Bernard RTF (1984) Relative brain size in the mammalian carnivores of the Cape province of South Africa. S Afr J Zool. 19:305–308

    Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds. A study in molecular evolution. Yale University Press, New Haven

    Google Scholar 

  • Simmons JA, Stein RA (1980) Acoustic imaging in bat sonar: echolocation signals and the evolution of echolocation. J Comp Physiol 135A:61–84

    Google Scholar 

  • Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT (eds) (1987) Primate societies. University of Chicago Press, Chicago

    Google Scholar 

  • Snell O (1891) Die Abhängigkeit des Hirngewichtes von dem Körpergewicht und den geistigen Fähigkeiten. Arch Psychiat Nervenkrankh 23:436–446

    Google Scholar 

  • Stephan H, Pirlot P (1970) Volumetric comparisons of brain structures in bats. Z Zool Syst Evol Forsch 8:200–236

    Google Scholar 

  • Stephan H, Pirlot P, Schneider R (1974) Volumetric analysis of pteropid brains. Acta Anat 87:161–192

    CAS  PubMed  Google Scholar 

  • Stephan H, Frahm H, Bauchot R (1977) Vergleichende Untersuchungen an den Gehirnen madagassischer Halbaffen I. Encephalisation und makromorphologie. J Hirnforsch 18:115–147

    CAS  PubMed  Google Scholar 

  • Stephan H, Frahm H, Baron G (1981a) New and revisited data on volumes of brain structures in insectivores and primates. Folia Primatol 35:1–29

    CAS  PubMed  Google Scholar 

  • Stephan H, Nelson J, Frahm HD (1981b) Brain size comparisons in Chiroptera. Z Zool Syst Evol Forsch 19:195–222

    Google Scholar 

  • Stephan H, Baron G, Frahm HD (1990) Comparative brain research in mammals, vol 1. Insectivora. With a stereotaxic atlas of the hedgehog brain. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Taylor GM, Nol E, Boire D (1995) Brain regions and encephalization in anurans: adaptation or stability? Brain Behav Evol 45:96–109

    CAS  PubMed  Google Scholar 

  • Terrace HS, Pettito LA, Sanders RJ, Bever TG. (1979) Can an ape create a sentence? Science 206:891–902

    CAS  PubMed  Google Scholar 

  • Thiede U (1973) Zur Evolution von Hirneigenschaften mitteleuropäischer und südamerikanischer Musteliden. II. Quantitativen Untersuchungen an Gehirne südamerikanischer Musteliden. Z Säugetierk 38:208–215

    Google Scholar 

  • Thireau M (1975) L’allometrie pondérale encéphalosomatique chez les Urodèles. I. Relations intraspécifiques. Bull Mus Natl Hist Nat 279, Zool 207:483–502

    Google Scholar 

  • Toth N, Clark D, Ligabue G (1992) The last stone axe makers. Sci Am 266:66–71

    Google Scholar 

  • Van Valen L (1974) Brain size and intelligence in man. Am J Phys Anthropol 40:417–424

    PubMed  Google Scholar 

  • Von Bonin G (1937) Brain weight and body weight of mammals. J Gen Psychol 16:379–389

    Google Scholar 

  • Weber M (1891) Beiträge zur Entwicklung und Anatomie des Genus Manis. Ergebnisse einer Reise nach Niederländisch Ostindien, vol II, Brill, Leiden

    Google Scholar 

  • Weber M (1896) Vorstudien über das Hirngewicht der Säugetiere. Festschr C Gegenbaur 3:102–123

    Google Scholar 

  • Willerman L, Schultz R, Rutledge JN, Bigler ED (1991) In vivo brain size and intelligence. Intelligence 15:223–228

    Google Scholar 

  • Wilson EO (1975) Sociobiology: the new synthesis. Belknap, Cambridge, Mass

    Google Scholar 

  • Worthy GAJ, Hickie JP (1986) Relative brain size in marine mammals. Am Naturalist 128:445–459

    Google Scholar 

  • Zepelin H, Rechtschaffen A (1974) Mammalian sleep, longevity and energy metabolism. Brain Behav Evol 10:425–470

    CAS  PubMed  Google Scholar 

Download references

Authors

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Dongen, P.A.M. (1998). Brain Size in Vertebrates. In: The Central Nervous System of Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18262-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18262-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62127-7

  • Online ISBN: 978-3-642-18262-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics