Skip to main content

Introduction to Force Measurement

  • Chapter
Handbook of Force Transducers

Abstract

Our sense of touch is a primary means of interaction with environment. If we have to create interfaces that can communicate force information [1.1], a wide range of sizes is conceivable, capable of generating and sensing time-varying forces at a single point or a distributed array of points on a surface (Table 1.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fletcher, R.: Force transduction materials for human-technology interfaces. IBM Systems Journal 35(3&4), 630–638 (1996)

    Article  Google Scholar 

  2. Tuning into the virtues of virtual labs. research eu – results supplement, No. 16, p. 36. Image © ShutterStock 2009, European Research Area (July/August 2009)

    Google Scholar 

  3. Israelachvili, J.N.: Intermolecular and surface forces, 2nd edn. Academic Press, London (1995)

    Google Scholar 

  4. Braginsky, V.B., Manukin, A.B., Douglass, D.H.: Measurement of Weak Forces in Physics Experiments {Translation from Russian of Izmerenie malykh sil v fizicheskikh eksperimentakh}. The University of Chicago Press, London (1977)

    Google Scholar 

  5. Horowitz, P., Hill, W.: The Art of Electronics. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  6. Patterson, M.: Force, Pressure, and Torque (January 2007), http://academic.udayton.edu/MarkPatterson/ECT459/force

  7. Yaniv, S.: Why measure force? (March 2005), http://www.mel.nist.gov/div822/why.htm

  8. Silver, F.H.: Mechanosensing and Mechanochemical Transduction in Extracellular Matrix. Biological, Chemical, Engineering, and Physiological Aspects. Springer, Heidelberg (2006)

    Google Scholar 

  9. Ştefănescu, D.M.: Strain gauged elastic elements for force and related quantities measurement. In: CD Proc. IMEKO Int’l Conf. Cultivating Metrological Knowledge, Merida, Mexico, November 27-30, Paper 22 (2007)

    Google Scholar 

  10. Letter symbols to be used in electrical technology, 6th edn. Ref. number CEI/IEC 27-1 (1992)

    Google Scholar 

  11. Koch, S.J., Thayer, G.E., Corwin, A.D., de Boer, M.P.: Micromachined piconewton force sensor for biophysics investigations. Applied Physics Letters 89, Paper 173901. American Institute of Physics, New York (2006)

    Google Scholar 

  12. Paetow, J.: Weighing cell and force transducer – there is a difference. In: Private discussions at Hottinger Baldwin Messtechnik, Darmstadt, Germany (November 1987)

    Google Scholar 

  13. Grave, H.F.: Elektrische Messung nichtelektrischer Grössen. Akademische Verlagsgesellschaft Geest & Portig KG, Leipzig, DDR (1965)

    Google Scholar 

  14. Duffait, R., Nogarede, B.: Mesure des faibles couples dans les microsystems. In: Actes des conferences Metrologie 1997, Besançon, France, October 20-23, pp. 171–177 (1997)

    Google Scholar 

  15. Hunt, A. (Coord.): Guide to the Measurement of Force. The Institute of Measurement and Control, London (Published 1998); ISBN 0-904457-28-1

    Google Scholar 

  16. Ilincioiu, D., Păsărin, C., Petrişor, D.: Force indicator. In: Proc. 14th Symposium Danubia-Adria on Experimental Methods in Solid Mechanics, Poreč, Croatia, October 2-4 (1997)

    Google Scholar 

  17. Milea, T., Bit, C.: Force measurement method by means of elasto-optical contact. Private communication, Transylvania University, Braşov, Romania, May 20 (1993)

    Google Scholar 

  18. Wyrembeck, E.P.: Inductively modeling parallel, normal, and frictional forces. The Physics Teacher 43, 107–110 (2005)

    Article  Google Scholar 

  19. Ngai, V., Medley, J.B., Jones, L.: Friction of hydrogel (long-wear silicone and soft disposable) contact lenses. The inaugural Ontario Biomechanics Conference, Session 1.4, Barrie, Canada, February 27-29 (2004)

    Google Scholar 

  20. Sajewicz, E., Kulesza, Z.: A new tribometer for friction and wear studies of dental materials and hard tooth tissues. Tribology International 40(5), 885–895 (2007)

    Article  Google Scholar 

  21. Krim, J.: QCM tribology studies of thin absorbed films. Nanotoday 2(5), 38–43 (2007)

    Google Scholar 

  22. Makarov, A.R., Renski, A.B., Borkunski, G.H., Etingof, M.I.: Tensometry in Machine Building. Izdat Mashinostroienie, Moskva (1975) (in Russian)

    Google Scholar 

  23. Evans, M.S., Stoughton, R.S., Kazerooni, H.: Hydrostatic force sensor. In: Proc. 5th Int’l Symp. on Robotics & Manufacturing, Maui, Hawaii (August 1994)

    Google Scholar 

  24. de Volder, M., Ceyssens, F., Reynaerts, D., Puers, R.: A PDMS lipseal for hydraulic and pneumatic microactuator. J. Micromech. Microeng. 17, 1232–1237 (2007)

    Article  Google Scholar 

  25. Hydraulic load cells. International Equipment News, No. 9, p. 21 (September 2002)

    Google Scholar 

  26. Hadăr, A., Szabo, A., Gheorghiu, H.: Cylinder with diffract piston for measuring masses and weights. November 13-15, Salon INNOVA Eureka, Brussels, Belgium (2008)

    Google Scholar 

  27. Buchner, C.: Determination of micro-forces from 1 μN up to 10 N realized with a full automatically dead load machine developed by the BEV. In: Proc. XIX IMEKO World Congress on Fundamental and Applied Metrology, Lisbon, Portugal, September 6-11, pp. 397–401 (2009)

    Google Scholar 

  28. Tita, I., Bârsănescu, P., Schultes, G.: HydroWIM – Hydraulic sensor for Weigh in Motion application. Research report, Hochschule für Technik und Wirtschaft des Saarlandes, Saarbrücken, Deutschland (2005)

    Google Scholar 

  29. Ariel, G.B., Penny, M.A.: The computerized resistive exercise dynamometer (December 2002), http://www.sportsci.com/topics/ces/red_nasa/red1991.html

  30. Regtien, P.P.L.: Instrumentation Electronics: Basic Electronic Theory and Techniques, p. 2. Prentice Hall, New York (1992)

    Google Scholar 

  31. Ştefănescu, D.M.: Methods for increasing the sensitivity of strain gauge force transducers. PhD Dissertation, p. 4, “Politehnica” University of Bucharest (1999)

    Google Scholar 

  32. Pedersen, H.C.: Measurement techniques and data acquisition. Lecture notes for the 6th semester course, Aalborg, Denmark (January 2006)

    Google Scholar 

  33. Fraden, J.: Handbook of Modern Sensors – Physics, Design and Applications, 3rd edn. Springer, Heidelberg (2004)

    Google Scholar 

  34. Norton, H.N.: Handbook of Transducers for Electronic Measuring Systems. Prentice Hall, Inc., Englewood Cliffs (1969)

    Google Scholar 

  35. The inside story: Pressure sensors or pressure transducers? Leaflet from Data Instruments – Transducer Products Group, Lexington, MA (no year)

    Google Scholar 

  36. Fleming Dias, J.: Transducers. In: Coombs, C.F. (ed.) Electronic Instrument Handbook, ch. 5, 3rd edn. McGraw-Hill, New York (1999)

    Google Scholar 

  37. Bethe, K.: Optimization of compact force-sensor/load-cell family. Sensors and Actuators A: Physical 42(1-3), 362–367 (1994)

    Article  Google Scholar 

  38. Nishimoto, Y., Taguchi, T., Masumoto, K., Ogita, K., Nakamura, M., Taguchi, S., Uesugi, T., Takada, N., Suita, S.: Real-time monitoring for detecting rejection using strain gauge force transducers in porcine small bowel transplantation. Transplantation Proceedings 36, 343–344 (2004)

    Article  Google Scholar 

  39. Force sensing – instruments, sensors and equipment for measuring static or dynamic force or torque, August 27 (2009), http://sensors-transducers.globalspec.com/.../force_sensing

  40. Busch-Vishniac, I.J.: Electromechanical Sensors and Actuators. Springer, Heidelberg (1999)

    Google Scholar 

  41. Usher, M.J., Keating, D.A.: Sensors and Transducers – Characteristics, Applications, Instrumentation, Interfacing, 2nd edn. MacMillan, Houndmills (1996)

    Google Scholar 

  42. Middelhoek, S., Audet, S.A.: Silicon Sensors. Academic Press Ltd (Harcourt Brace Jovanovich Publishers), London (1989)

    Google Scholar 

  43. Imerito, T.: MEMS – Imagination for Microelectronics. Science and Technology Communications, Pittsburgh Technology Council, PA (March 2006)

    Google Scholar 

  44. Pallás-Areny, R., Webster, J.G.: Sensors and Signal Conditioning. John Wiley & Sons, Inc., New York (1991)

    Google Scholar 

  45. Stein, P.K.: The Unified Approach to the Engineering of Measurement Systems for Test and Evaluation, Part I - Basic Concepts. Fifth Printing with Revisions. Stein Engineering Services, Inc., Phoenix, AZ (1995)

    Google Scholar 

  46. Culsaw, B.: Smart Structures and Materials. Artech House, Boston (1996)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ştefănescu, D.M. (2011). Introduction to Force Measurement. In: Handbook of Force Transducers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18296-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18296-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18295-2

  • Online ISBN: 978-3-642-18296-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics