Skip to main content

Molecular Aspects of AT2 Receptor

  • Chapter
Angiotensin Vol. I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 163 / 1))

Abstract

The octapeptide angiotensin II (Ang II) binds to two subtypes of receptors, AT1 and AT2, that both belong to the superfamily of G protein-coupled receptors (GPCRs). The AT1 subtype is a classical GPCR in terms of coupling and signaling, and appears to mediate all known physiological actions of Ang II. In contrast, the AT2 subtype is an atypical receptor that has remained a puzzle since its discovery in 1989 and molecular cloning in 1993. Over the past 10 years, a number of studies have aimed at elucidating the signaling pathways and functions of the AT2 subtype. A role for AT2 receptors has been established during fetal development and in cardiovascular, brain, and renal functions. In most cases, the AT2 receptor has been shown to counteract the effects of the AT1 subtype. AT2 also negatively cross-talks with growth factor receptors and plays a major role in the processes of apoptosis, migration, differentiation, and tissue regeneration. Depending on the cellular model and function examined, the AT2 receptor activates different signaling pathways, that can be classified into three major types: regulation of protein phosphorylation, activation of phospholipases, and/or regulation of nitric oxide (NO)/cGMP. In the present chapter, we review recent advances on the molecular aspects of the AT2 receptor: its structural features (functional domains involved in ligand binding and receptor activation), signaling pathways, coupling to G proteins and association with other intracellular partners. We then examine the molecular mechanisms by which AT2 antagonizes the effects of the AT1 subtype. Examples of AT2 receptor gene alterations associated with human diseases such as congenital anomalies of kidney and urinary tract (CAKUT) or X-linked mental retardation, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AbdAlla S, Lother H, Abdel-tawab A, Quitterer U (2001) The angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem 276:39721–39726

    PubMed  CAS  Google Scholar 

  • Bedecs K, Elbaz N, Sutren M, Masson M, Susini C, Strosberg A, Nahmias C (1997) Angiotensin II type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and functional activation of SHP-1 tyrosine phosphatase. Biochem J 325:449–454

    PubMed  CAS  Google Scholar 

  • Bottari S, Taylor V, King I, Bogdal Y, Whitebread S, Gasparo Md (1991) Angiotensin II AT2 receptors do not interact with guanine nucleotide binding proteins. Eur J Pharmacol 207:157–163

    PubMed  CAS  Google Scholar 

  • Bottari S, King I, Reichlin S, Dahlstroem I, Lydon N, Gasparo Md (1992) The angiotensin AT2 receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase. Biochem Biophys Res Commun 183:206–211

    PubMed  CAS  Google Scholar 

  • Brady A, Limbird L (2002) G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 14:297–309

    PubMed  CAS  Google Scholar 

  • Braszko J (2002) AT(2) but not AT(1) receptor antagonism abolishes angiotensin II increase of the acquisition of conditioned avoidance responses in rats. Behav Brain Res 131:79–86

    PubMed  CAS  Google Scholar 

  • Brechler V, Reichlin S, Gasparo MD, Bottari S (1994) Angiotensin II stimulates protein tyrosine phosphatase activity through a G-protein independent mechanism. Receptors Channels 2:89–98

    PubMed  CAS  Google Scholar 

  • Brede M, Hadamek K, Meinel L, Wiesmann F, Peters J, Engelhardt S, Simm A, Haase A, Lohse M, Hein L (2001) Vascular hypertrophy and increased P70S6 kinase in mice lacking the angiotensin II AT(2) receptor. Circulation 104:2602–2607

    PubMed  CAS  Google Scholar 

  • Buisson B, Laflamme L, Bottari S, Gasparo Md, Gallo-Payet N, Payet M (1995) A G protein is involved in the angiotensin AT2 receptor inhibition of the T-type calcium current in non-differentiated NG108-15 cells. J Biol Chem 270:1670–1674

    PubMed  CAS  Google Scholar 

  • Carey R, Jin X, Wang Z, Siragy H (2000) Nitric oxide: a physiological mediator of the type 2 (AT2) angiotensin receptor. Acta Physiol Scand 168:65–71

    PubMed  CAS  Google Scholar 

  • Chassagne C, Adamy C, Ratajczak P, Gingras B, Teiger E, Planus E, Oliviero P, Rappaport L, Samuel J, Meloche S (2002) Angiotensin II AT(2) receptor inhibits smooth muscle cell migration via fibronectin cell production and binding. Am J Physiol Cell Physiol 282:C654–C664

    PubMed  CAS  Google Scholar 

  • Chiu A, Herblin W, McCall D, Ardecky R, Carini D, Duncia J, Pease L, Wong P, Wexler R, AL AJ (1989a) Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165:196–203

    PubMed  CAS  Google Scholar 

  • Chiu A, McCall D, Nguyen T, Carini D, Duncia J, Herblin W, Uyeda R, Wong P, Wexler R, Johnson A (1989b) Discrimination of angiotensin II receptor subtypes by dithiothre-itol. Eur J Pharmacol 170:117–118

    PubMed  CAS  Google Scholar 

  • Cote F, Laflamme L, Payet M, Gallo-Payet N (1998) Nitric oxide, a new second messenger involved in the action of angiotensin II on neuronal differentiation of NG108-15 cells. Endocr Res 24:403–407

    PubMed  CAS  Google Scholar 

  • Cote F, Do T, Laflamme L, Gallo J, Gallo-Payet N (1999) Activation of the AT(2) receptor of angiotensin II induces neurite outgrowth and cell migration in microexplant cultures of the cerebellum. J Biol Chem 274:31686–31692

    PubMed  CAS  Google Scholar 

  • Cui T, Nakagami H, Iwai M, Takeda Y, Shiuchi T, Tamura K, Daviet L, Horiuchi M (2000) ATRAP, novel AT] receptor associated protein, enhances internalization of AT1 receptor and inhibits vascular smooth muscle cell growth. Biochem Biophys Res Commun 279:938–941

    PubMed  CAS  Google Scholar 

  • Cui T, Nakagami H, Iwai M, Takeda Y, Shiuchi T, Daviet L, Nahmias C, Horiuchi M (2001) Pivotal role of tyrosine phosphatase SHP-1 in AT2 receptor-mediated apoptosis in rat fetal vascular smooth muscle cell. Cardiovasc Res 49:863–871

    PubMed  CAS  Google Scholar 

  • Cui T, Nakagami H, Nahmias C, Shiuchi T, Takeda-Matsubara Y, Li J, Wu L, Iwai M, Horiuchi M (2002) Angiotensin II Subtype 2 Receptor Activation Inhibits Insulin-Induced Phosphoinositide 3-Kinase and Akt and Induces Apoptosis in PC12W Cells. Mol Endocrinol 16:2113–2123

    PubMed  CAS  Google Scholar 

  • Daviet L, Lehtonen J, Tamura K, Griese D, Horiuchi M, Dzau V (1999) Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor. J Biol Chem 274:17058–17062

    PubMed  CAS  Google Scholar 

  • Daviet L, Lehtonen J, Hayashida W, Dzau V, Horiuchi M (2001) Intracellular third loops in AT1 and AT2 receptors determine subtype specificity. Life Sci 69:509–516

    PubMed  CAS  Google Scholar 

  • DePaolis P, Porcellini A, Savoia C, Lombardi A, Gigante B, Frati G, Rubattu S, Musumeci B, Volpe M (2002) Functional cross-talk between angiotensin II and epidermal growth factor receptors in NIH3T3 fibroblasts. J Hypertens 20:693–699

    CAS  Google Scholar 

  • Deraet M, Rihakova L, Boucard A, Perodin J, Sauve S, Mathieu A, Guillemette G, Leduc R, Lavigne P, Escher E (2002) Angiotensin II is bound to both receptors AT1 and AT2, parallel to the transmembrane domains and in an extended form. Can J Physiol Pharmacol 80:418–425

    PubMed  CAS  Google Scholar 

  • Dittus J, Cooper S, Obermair G, Pulakat L, Obermeir G (1999) Role of the third intracellular loop of the angiotensin II receptor subtype AT2 in ligand-receptor interaction. FEBS Lett 445:23–26

    PubMed  CAS  Google Scholar 

  • Dulin N, Alexander L, Harwalkar S, Falck J, Douglas J (1998) Phospholipase A2-mediated activation of mitogen-activated protein kinase by angiotensin II. Proc Natl Acad Sci USA 95:8098–8102

    PubMed  CAS  Google Scholar 

  • Elbaz N, Bedecs K, Masson M, Sutren M, Strosberg AD, Nahmias C (2000) Functional trans-inactivation of insulin receptor kinase by growth-inhibitory angiotensin II AT2 receptor. Mol Endocrinol 14:795–804

    PubMed  CAS  Google Scholar 

  • Feng Y, Saad Y, Karnik SS (2000) Reversible inactivation of AT(2) angiotensin II receptor from cysteine-disulfide bond exchange. FEBS Lett 484:133–138

    PubMed  CAS  Google Scholar 

  • Feng Y, Sun Y, Douglas J (2002) Gβγ-independent constitutive association of Gas with SHP-1 and angiotensin II receptor AT2 is essential in AT2-mediated ITIM-indepen-dent activation of SHP-1. Proc Natl Acad Sci USA 99:12049–12054

    PubMed  CAS  Google Scholar 

  • Fischer J, Stoll M, Hahn A, Unger T (2001) Differential regulation of thrombospondin-1 and fibronectin by angiotensin II receptor subtypes in cultured endothelial cells. Cardiovasc Res 51:784–791

    PubMed  CAS  Google Scholar 

  • Gallinat S, Csikos T, Meffert S, Herdegen T, Stoll M, Unger T (1997) The angiotensin AT2 receptor down-regulates neurofilament M in PC12W cells. Neurosci Lett 227:29–32

    PubMed  CAS  Google Scholar 

  • Gallinat S, Busche S, Schutze S, Kronke M, Unger T (1999) AT2 receptor stimulation induces generation of ceramides in PC12W cells. FEBS Lett 443:75–79

    PubMed  CAS  Google Scholar 

  • Gelband C, Zhu M, Lu D, Reagan L, Fluharty S, Posner P, Raizada M, Sumners C (1997) Functional interactions between neuronal AT1 and AT2 receptors. Endocrinology 138:2195–2198

    PubMed  CAS  Google Scholar 

  • Gendron L, Laflamme L, Asselin C, Payet M, Gallo-Payet N (1998) A role for p21ras in the angiotensin II AT2 receptor transduction pathway. Endocr Res 24:409–412

    PubMed  CAS  Google Scholar 

  • Gendron L, Laflamme L, Rivard N, Asselin C, Payet M, Gallo-Payet N (1999) Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21ras and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108-15 cells. Mol Endocrinol 13:1615–1626

    PubMed  CAS  Google Scholar 

  • Gendron L, Cote F, Payet M, Gallo-Payet N (2002) Nitric oxide and cyclic GMP are involved in angiotensin II AT(2) receptor effects on neurite outgrowth in NG108-15 cells. Neuroendocrinology 75:70–81

    PubMed  CAS  Google Scholar 

  • Gohlke P, Pees C, linger T (1998) AT2 receptor stimulation increases aortic cyclic GMP in SHRSP by a kinin-dependent mechanism. Hypertension 31:349–355

    PubMed  CAS  Google Scholar 

  • Hackel P, Zwick E, Prenzel N, Ullrich A (1999) Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 11:184–189

    PubMed  CAS  Google Scholar 

  • Hansen J, Servant G, Baranski T, Fujita T, Iiri T, Sheikh S (2000) Functional reconstitution of the angiotensin II type 2 receptor and G(i) activation. Circ Res 87:753–759

    PubMed  CAS  Google Scholar 

  • Harwalkar S, Chang C, Dulin N, Douglas J (1998) Role of phospholipase A2 isozymes in agonist-mediated signaling in proximal tubular epithelium. Hypertension 31:809–814

    PubMed  CAS  Google Scholar 

  • Hayashida W, Horiuchi M, Dzau V (1996) Intracellular third loop domain of angiotensin II type-2 receptor. Role in mediating signal transduction and cellular function. J Biol Chem 271:21985–21992

    PubMed  CAS  Google Scholar 

  • Heerding J, Yee D, Jacobs S, Fluharty S (1997) Mutational analysis of the angiotensin II type 2 receptor: contribution of conserved extracellular amino acids. Regul Pept 72:97–103

    PubMed  CAS  Google Scholar 

  • Heerding J, Yee D, Krichavsky M, Fluharty S (1998) Mutational analysis of the angiotensin type 2 receptor: contribution of conserved amino acids in the region of the sixth transmembrane domain. Regul Pept 74:113–119

    PubMed  CAS  Google Scholar 

  • Heerding J, Hines J, Fluharty S, Yee D (2001) Identification and function of disulfide bridges in the extracellular domains of the angiotensin II type 2 receptor. Biochemistry 40:8369–8377

    PubMed  CAS  Google Scholar 

  • Hein L, Barsh G, Pratt R, Dzau V, Kobilka B (1995) Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature 377:744–747

    PubMed  CAS  Google Scholar 

  • Hines J, Fluharty S, Yee D (2001a) Chimeric AT1/AT2 receptors reveal functional similarities despite key amino acid dissimilarities in the domains mediating agonist-dependent activation. Biochemistry 40:11251–11260

    PubMed  CAS  Google Scholar 

  • Hines J, Heerding J, Fluharty S, Yee D (2001b) Identification of angiotensin II type 2 (AT2) receptor domains mediating high-affinity CGP 42112A binding and receptor activation. J Pharmacol Exp Ther 298:665–673

    PubMed  CAS  Google Scholar 

  • Hiraoka M, Taniguchi T, Nakai H, Kino M, Okada Y, Tanizawa A, Tsukahara H, Ohshima Y, Muramatsu I, Mayumi M (2001) No evidence for AT2R gene derangement in human urinary tract anomalies. Kidney Int 59:1244–1249

    PubMed  CAS  Google Scholar 

  • Horiuchi M, Hayashida W, Kambe T, Yamada T, Dzau V (1997) Angiotensin type 2 receptor dephosphorylates Bcl-2 by activating mitogen-activated protein kinase phospha-tase-1 and induces apoptosis. J Biol Chem 272:19022–19026

    PubMed  CAS  Google Scholar 

  • Horiuchi M, Hayashida W, Akishita M, Tamura K, Daviet L, Lehtonen J, Dzau V (1999a) Stimulation of different subtypes of angiotensin II receptors, AT1 and AT2 receptors, regulates STAT activation by negative crosstalk. Circ Res 84:876–882

    PubMed  CAS  Google Scholar 

  • Horiuchi M, Lehtonen J, Daviet L (1999b) Signaling Mechanism of the AT2 Angiotensin II Receptor: Crosstalk between AT1 and AT2 Receptors in Cell Growth. Trends Endocrinol Metab 10:391–396

    PubMed  CAS  Google Scholar 

  • Huang X, Richards E, Sumners C (1995) Angiotensin II type 2 receptor-mediated stimulation of protein phosphatase 2A in rat hypothalamic/brainstem neuronal cocultures. J Neurochem 65:2131–2137

    PubMed  CAS  Google Scholar 

  • Huang X, Richards E, Sumners C (1996) Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors. J Biol Chem 271:15635–15641

    PubMed  CAS  Google Scholar 

  • Ichiki T, Labosky P, Shiota C, Okuyama S, Imagawa Y, Fogo A, Niimura F, Ichikawa I, Hogan B, Inagami T (1995) Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 377:748–750

    PubMed  CAS  Google Scholar 

  • Jacobs L, Douglas J (1996) Angiotensin II type 2 receptor subtype mediates phospholi-pase A2-dependent signaling in rabbit proximal tubular epithelial cells. Hypertension 28:663–668

    PubMed  CAS  Google Scholar 

  • Jiao H, Cui X, Torti M, Chang C, Alexander L, Lapetina E, Douglas J (1998) Arachidonic acid mediates angiotensin II effects on p21ras in renal proximal tubular cells via the tyrosine kinase-Shc-Grb2-Sos pathway. Proc Natl Acad Sci USA 95:7417–7421

    PubMed  CAS  Google Scholar 

  • Kang J, Posner P, Sumners C (1994) Angiotensin II type 2 receptor stimulation of neuronal K+ currents involves an inhibitory GTP binding protein. Am J Physiol 267:1389–1397

    Google Scholar 

  • Kang J, Richards E, Posner P, Sumners C (1995) Modulation of the delayed rectifier K+ current in neurons by an angiotensin II type 2 receptor fragment. Am J Physiol 268:C278–C282

    PubMed  CAS  Google Scholar 

  • Knowle D, Ahmed S, Pulakat L (2000) Identification of an interaction between the angiotensin II receptor sub-type AT2 and the ErbB3 receptor, a member of the epidermal growth factor receptor family. Regul Pept 87:73–82

    PubMed  CAS  Google Scholar 

  • Knowle D, Kurfis J, Gavini N, Pulakat L (2001) Role of Asp297 of the AT2 receptor in high-affinity binding to different peptide ligands. Peptides 22:2145–2149

    PubMed  CAS  Google Scholar 

  • Kohagura K, Endo Y, Ito O, Arima S, Omata K, Ito S (2000) Endogenous nitric oxide and epoxyeicosatrienoic acids modulate angiotensin II-induced constriction in the rabbit afferent arteriole. Acta Physiol Scand 168:107–112

    PubMed  CAS  Google Scholar 

  • Kurfis J, Knowle DK, Pulakat L (1999) Role of Arg 182 in the second extracellular loop of angiotensin II receptor AT2 in ligand binding. Biochem Biophys Res Commun 263:816–819

    PubMed  CAS  Google Scholar 

  • Laflamme L, Gasparo M, Gallo J, Payet M, Gallo-Payet N (1996) Angiotensin II induction of neurite outgrowth by AT2 receptors in NG108-15 cells. Effect counteracted by the AT1 receptors. J Biol Chem 271:22729–22735

    PubMed  CAS  Google Scholar 

  • Lazard D, Briend-Sutren M, Villageois P, Mattei M, Strosberg A, Nahmias C (1994a) Molecular characterization and chromosome localization of a human angiotensin II AT2 receptor gene highly expressed in fetal tissues. Receptors Channels 2:271–280

    PubMed  CAS  Google Scholar 

  • Lazard D, Villageois P, Briend-Sutren M, Cavaille F, Bottari S, Strosberg A, Nahmias C (1994b) Characterization of a membrane glycoprotein having pharmacological and biochemical properties of an AT2 angiotensin II receptor from human myometrium. Eur J Biochem 220:919–926

    PubMed  CAS  Google Scholar 

  • Lehtonen J, Daviet L, Nahmias C, Horiuchi M, Dzau V (1999a) Analysis of functional domains of angiotensin II type 2 receptor involved in apoptosis. Mol Endocrinol 13:1051–1060

    PubMed  CAS  Google Scholar 

  • Lehtonen J, Horiuchi M, Daviet L, Akishita M, Dzau V (1999b) Activation of the de novo biosynthesis of sphingolipids mediates angiotensin II type 2 receptor-induced apoptosis. J Biol Chem 274:16901–16906

    PubMed  CAS  Google Scholar 

  • Lopez F, Esteve J, Buscail L, Delesque N, Saint-Laurent N, Theveniau M, Nahmias C, Vaysse N, Susini C (1997) The tyrosine phosphatase SHP-1 associates with the sst2 somatostatin receptor and is an essential component of sst2-mediated inhibitory growth signaling. J Biol Chem 272:24448–24454

    PubMed  CAS  Google Scholar 

  • Lucius R, Gallinat S, Rosenstiel P, Herdegen T, Sievers J, Unger T (1998) The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats. J Exp Med 188:661–670

    PubMed  CAS  Google Scholar 

  • Marinissen M, Gutkind J (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–376

    PubMed  CAS  Google Scholar 

  • Marrero M, Venema V, Ju H, Eaton D, Venema R (1998) Regulation of angiotensin II-in-duced JAK2 tyrosine phosphorylation: roles of SHP-1 and SHP-2. Am J Physiol 275:C1216–C1223

    PubMed  CAS  Google Scholar 

  • Martens J, Wang D, Sumners C, Posner P, Gelband C (1996) Angiotensin II type 2 receptor-mediated regulation of rat neuronal K+ channels. Circ Res 79:302–309

    PubMed  CAS  Google Scholar 

  • Martin M, Elton T (1995) The sequence and genomic organization of the human type 2 angiotensin II receptor. Biochem Biophys Res Commun 209:554–562

    PubMed  CAS  Google Scholar 

  • Masaki H, Kurihara T, Yamaki A, Inomata N, Nozawa Y, Mori Y, Murasawa S, Kizima K, Maruyama K, Horiuchi M, Dzau V, Takahashi H, Iwasaka T, Inada M, Matsubara H (1998) Cardiac-specific overexpression of angiotensin II AT2 receptor causes attenuated response to AT1 receptor-mediated pressor and chronotropic effects. J Clin Invest 101:527–535

    PubMed  CAS  Google Scholar 

  • Matsubara H, Shibasaki Y, Okigaki M, Mori Y, Masaki H, Kosaki A, Tsutsumi Y, Uchiyama Y, Fujiyama S, Nose A, Iba O, Tateishi E, Hasegawa T, Horiuchi M, Nahmias C, Iwasaka T (2001) Effect of angiotensin II type 2 receptor on tyrosine kinase Pyk2 and c-Jun NH2-terminal kinase via SHP-1 tyrosine phosphatase activity: evidence from vascular-targeted transgenic mice of AT2 receptor. Biochem Biophys Res Commun 282:1085–1089

    PubMed  CAS  Google Scholar 

  • Meffert S, Stoll M, Steckelings U, Bottari S, Unger T (1996) The angiotensin II AT2 receptor inhibits proliferation and promotes differentiation in PC12W cells. Mol Cell Endocrinol 122:59–67

    PubMed  CAS  Google Scholar 

  • Mifune M, Sasamura H, Shimizu-Hirota R, Miyazaki H, Saruta T (2000) Angiotensin II type 2 receptors stimulate collagen synthesis in cultured vascular smooth muscle cells. Hypertension 36:845–850

    PubMed  CAS  Google Scholar 

  • Miura S, Karnik S (1999) Angiotensin II type 1 and type 2 receptors bind angiotensin II through different types of epitope recognition. J Hypertens 17:397–404

    PubMed  CAS  Google Scholar 

  • Miura S, Karnik S (2000) Ligand-independent signals from angiotensin II type 2 receptor induce apoptosis. EMBO J 19:4026–4035

    PubMed  CAS  Google Scholar 

  • Nahmias C, Cazaubon S, Briend-Sutren M, Lazard D, Villageois P, Strosberg A (1995) Angiotensin II AT2 receptors are functionally coupled to protein tyrosine dephosphory-lation in N1E-115 neuroblastoma cells. Biochem J 306:87–92

    PubMed  CAS  Google Scholar 

  • Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley T, Yoshida H, Ichiki T, Threadgill D, Phillips J, Hogan B, Fogo A, Brock J, Inagami T, Ichikawa I (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3:1–10

    PubMed  CAS  Google Scholar 

  • Nouet S, Nahmias C (2000) Signal transduction from the angiotensin II AT2 receptor. Trends Endocrinol Metab 11:1–6

    PubMed  CAS  Google Scholar 

  • Nuyt A, Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C (1999) Ontogeny of angiotensin II type 2 receptor mRNA expression in fetal and neonatal rat brain. J Comp Neurol 407:193–206

    PubMed  CAS  Google Scholar 

  • Okuyama S, Sakagawa T, Chaki S, Imagawa Y, Ichiki T, Inagami T (1999) Anxiety-like behavior in mice lacking the angiotensin II type-2 receptor. Brain Res 821:150–159

    PubMed  CAS  Google Scholar 

  • Olayioye M, Neve R, Lane H, Hynes N (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19:3159–3167

    PubMed  CAS  Google Scholar 

  • Pulakat L, Tadessee A, Dittus J, Gavini N (1998) Role of Lys215 located in the fifth transmembrane domain of the AT2 receptor in ligand-receptor interaction. Regul Pept 73:51–57

    PubMed  Google Scholar 

  • Pulakat L, Gray A, Johnson J, Knowle D, Burns V, Gavini N (2002) Role of C-terminal cytoplasmic domain of the AT2 receptor in ligand binding and signaling. FEBS Lett 524:73–78

    PubMed  CAS  Google Scholar 

  • Rossig L, Hermann C, Haendeler J, Assmus B, Zeiher A, Dimmeier S (2002) Angiotensin II-induced upregulation of MAP kinase phosphatase-3 mRNA levels mediates endothelial cell apotosis. Basic Res Cardiol 97:1–8

    PubMed  CAS  Google Scholar 

  • Salahpour A, Angers S, Bouvier M (2000) Functional significance of oligomerization of G-protein-coupled receptors. Trends Endocrinol Metab 11:163–168

    PubMed  CAS  Google Scholar 

  • Sasamura H, Mifune M, Nakaya H, Amemiya T, Hiraki T, Nishimoto I, Saruta T (2000) Analysis of Galpha protein recognition profiles of angiotensin II receptors using chimeric Galpha proteins. Mol Cell Endocrinol 170:113–121

    PubMed  CAS  Google Scholar 

  • Schelman W, Kurth J, Berdeaux R, Norby S, Weyhenmeyer J (1997) Angiotensin II type-2 (AT2) receptor-mediated inhibition of NMDA receptor signaling in neuronal cells. Brain Res Mol Brain Res 48:197–205

    PubMed  CAS  Google Scholar 

  • Servant G, Dudley D, Escher E, Guillemette G (1996) Analysis of the role of N-glycosylation in cell-surface expression and binding properties of angiotensin II type-2 receptor of rat pheochromocytoma cells. Biochem J 313:297–304

    PubMed  CAS  Google Scholar 

  • Servant G, Laporte S, Leduc R, Escher E, Guillemette G (1997) Identification of angiotensin Il-binding domains in the rat AT2 receptor with photolabile angiotensin analogs. J Biol Chem 272:8653–8659

    PubMed  CAS  Google Scholar 

  • Shenoy U, Richards E, Huang X, Sumners C (1999) Angiotensin II type 2 receptor-mediated apoptosis of cultured neurons from newborn rat brain. Endocrinology 140:500–509

    PubMed  CAS  Google Scholar 

  • Shibasaki Y, Matsubara H, Nozawa Y, Mori Y, Masaki H, Kosaki A, Tsutsumi Y, Uchiyama Y, Fujiyama S, Nose A, Iba O, Tateishi E, Hasegawa T, Horiuchi M, Nahmias C, Iwasaka T (2001) Angiotensin II type 2 receptor inhibits epidermal growth factor receptor transactivation by increasing association of SHP-1 tyrosine phosphatase. Hypertension 38:367–372

    PubMed  CAS  Google Scholar 

  • Siragy H, Carey R (1997) The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest 100:264–269

    PubMed  CAS  Google Scholar 

  • Siragy H, Inagami T, Ichiki T, Carey R (1999) Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype-2 (AT2) angiotensin receptor. Proc Natl Acad Sci USA 96:6506–6510

    PubMed  CAS  Google Scholar 

  • Sohn H, Raff U, Hoffmann A, Gloe T, Heermeier K, Galle J, Pohl U (2000) Differential role of angiotensin II receptor subtypes on endothelial superoxide formation. Br J Pharmacol 131:667–672

    PubMed  CAS  Google Scholar 

  • Stoll M, Unger T (2001) Angiotensin and its AT2 receptor: new insights into an old system. Regul Pept 99:175–182

    PubMed  CAS  Google Scholar 

  • Stroth U, Meffert S, Gallinat S, Unger T (1998) Angiotensin II and NGF differentially influence microtubule proteins in PC12W cells: role of the AT2 receptor. Brain Res Mol Brain Res 53:187–195

    PubMed  CAS  Google Scholar 

  • Stroth U, Blume A, Mielke K, Unger T (2000) Angiotensin AT(2) receptor stimulates ERK1 and ERK2 in quiescent but inhibits ERK in NGF-stimulated PC12W cells. Brain Res Mol Brain Res 78:175–180

    PubMed  CAS  Google Scholar 

  • Sumners C, Gelband C (1998) Neuronal ion channel signalling pathways: modulation by angiotensin II. Cell Signal 10:303–311

    PubMed  CAS  Google Scholar 

  • Turner C, Cooper S, Pulakat L (1999) Role of the His273 located in the sixth transmembrane domain of the angiotensin II receptor subtype AT2 in ligand-receptor interaction. Biochem Biophys Res Commun 257:704–707

    PubMed  CAS  Google Scholar 

  • Unger T (1999) The angiotensin type 2 receptor: variations on an enigmatic theme. J Hypertens 17:1775–1786

    PubMed  CAS  Google Scholar 

  • Vervoort V, Beachem M, Edwards P, Ladd S, Miller K, Mollerat X, Clarkson K, DuPont B, Schwartz C, Stevenson R, Boyd E, Srivastava AK (2002) AGTR2 mutations in X-linked mental retardation. Science 296:2401–2403

    PubMed  CAS  Google Scholar 

  • Wang C, Jayadev S, Escobedo J (1995) Identification of a domain in the angiotensin II type 1 receptor determining Gq coupling by the use of receptor chimeras. J Biol Chem 270:16677–16682

    PubMed  CAS  Google Scholar 

  • Warnecke C, Surder D, Curth R, Fleck E, Regitz-Zagrosek V (1999a) Analysis and functional characterization of alternatively spliced angiotensin II type 1 and 2 receptor transcripts in the human heart. J Mol Med 77:718–727

    PubMed  CAS  Google Scholar 

  • Warnecke C, Willich T, Holzmeister J, Bottari S, Fleck E, Regitz-Zagrosek V (1999b) Efficient transcription of the human angiotensin II type 2 receptor gene requires intronic sequence elements. Biochem J 340:17–24

    PubMed  CAS  Google Scholar 

  • Yamada H, Akishita M, Ito M, Tamura K, Daviet L, Lehtonen J, Dzau V, Horiuchi M (1999) AT2 receptor and vascular smooth muscle cell differentiation in vascular development. Hypertension 33:1414–1419

    PubMed  CAS  Google Scholar 

  • Yamada T, Horiuchi M, Dzau V (1996) Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156–160

    PubMed  CAS  Google Scholar 

  • Yee D, Kisley L, Heerding J, Fluharty S (1997) Mutation of a conserved fifth transmembrane domain lysine residue (Lys215) attenuates ligand binding in the angiotensin II type 2 receptor. Brain Res Mol Brain Res 51:238–241

    PubMed  CAS  Google Scholar 

  • Yee D, Heerding J, Krichavsky M, Fluharty S (1998) Role of the amino terminus in ligand binding for the angiotensin II type 2 receptor. Brain Res Mol Brain Res 57:325–329

    PubMed  CAS  Google Scholar 

  • Yoneda A, Cascio S, Green A, Barton D, Puri P (2002) Angiotensin II type 2 receptor gene is not responsible for familial vesicoureteral reflux. J Urol 168:1138–1141

    PubMed  CAS  Google Scholar 

  • Zhang J, Pratt R (1996) The AT2 receptor selectively associates with Gialpha2 and Gial-pha3 in the rat fetus. J Biol Chem 271:15026–15033

    PubMed  CAS  Google Scholar 

  • Zhu M, Gelband C, Moore J, Posner P, Sumners C (1998) Angiotensin II type 2 receptor stimulation of neuronal delayed-rectifier potassium current involves phospholipase A2 and arachidonic acid. J Neurosci 18:679–686

    PubMed  CAS  Google Scholar 

  • Zhu M, Natarajan R, Nadler J, Moore J, Gelband C, Sumners C (2000) Angiotensin II increases neuronal delayed rectifier K(+) current: role of 12-lipoxygenase metabolites of arachidonic acid. J Neurophysiol 84:2494–2501

    PubMed  CAS  Google Scholar 

  • Zhu M, Sumners C, Gelband C, Posner P (2001) Chronotropic effect of angiotensin II via type 2 receptors in rat brain neurons. J Neurophysiol 85:2177–2183

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nahmias, C., Boden, C. (2004). Molecular Aspects of AT2 Receptor. In: Unger, T., Schölkens, B.A. (eds) Angiotensin Vol. I. Handbook of Experimental Pharmacology, vol 163 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18495-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18495-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40640-2

  • Online ISBN: 978-3-642-18495-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics