Skip to main content

Angiotensin Receptor Signaling in the Brain: Ionic Currents and Neuronal Activity

  • Chapter
Angiotensin Vol. II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 163 / 2))

  • 189 Accesses

Abstract

The brain contains both major subtypes of angiotensin receptors, the angiotensin type 1 (AT1) and angiotensin type 2 (AT2) receptors. This chapter begin s with a review of the distribution of these receptor subtypes in the brain and continues with a discussion of their physiological and behavioral functions, from which it is clear that the AT l and AT2 recepto rs mediate very different centr al actions of angiotensin II (Ang II). However, the primary focus of this chapter is a discussion of the mechanisms through which Ang II, acting via AT1 and AT2 receptors, can produce rapid alterations in neuronal activity and ultimately functional changes. Hence, we review the studies that have demonstrated electrophysiological actions of Ang II in the brain, and then focus on the specific intr acellular signaling molecules that link the angio tensin receptor subtypes to changes in the activity of neuronal membrane ionic currents and firing rate. From this discussion it is clear that the intracellular signaling mechanisms that couple AT1 and AT2 receptors to changes in neuronal activity are vastly different. When taking a broader view of Ang II actions in neurons, it is evident that the signaling molecules responsible for regulation of neuronal activity represent only a few of the intracellular pathways that are modulated by this peptide

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht D, Nitschke T, Von Bohlen Und Halbach O 2000) Various effects of angiotensin II on amygdaloid neuronal activity in normotensive control and hypertensive transgenic rats. FASEB J 7:925–931

    Google Scholar 

  • Arnbühl P, Felix D, Imboden H, Khosla MC, Ferrario CM 1992a) Effects of angiotensin analogues and angiotensin recept or antagonists on paraventricular neurones. Regul Pept 38:111–120

    Article  Google Scholar 

  • Arnbühl P, Felix D, Imboden H, Khosla MC, Ferrario CM 1992b) Effects of angiotensin II and its selective antagonists on inferior olivary neurones. Regul Pept 41:19–26

    Article  Google Scholar 

  • Averill DB, Diz DI 2000) Angiotensin peptides and baroreflex control of sympathetic outflow: pathway and mechan isms of the medulla oblongata. Brain Res Bull 51:119128

    Google Scholar 

  • Bai D, Renaud LP 1998) ANG II AT1 receptors induce depolarization and inward current in rat median pre optic neurons in vitro. Am J Physiol 275:R632–R639

    PubMed  CAS  Google Scholar 

  • Baxter C, Horvath J, Duggin G, Tiller D 1979) Effect of age on angiotensin II receptors from rat brain. Clin Sci (Lond) 5:111s–1113s

    Google Scholar 

  • Bedecs K, Elbaz N, Sutren M, Masson M, Susini C, Strosberg AD, Nahmias C 1997) Angiotensin II type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and functional activation of SHP-l tyrosine phosphatase. Biochem J 325(Pt 2):449–454

    PubMed  CAS  Google Scholar 

  • Bernstein M, Lyons SA, Moller T, Kettenmann H 1996) Receptor-mediated calcium signaling in glial cells from mouse corpus callosum slices. J Neurosci Res 46:152–163

    Article  PubMed  CAS  Google Scholar 

  • Booth DA 1968) Mechanism of action of norepinephrine in eliciting an eating response on injection into the rat hypothalamus. J Pharmacol Exp Ther 160:336–348

    PubMed  CAS  Google Scholar 

  • Bottari SP, King IN, Reichlin S, Dahlstroem I, Lydon N, de Gasparo M 1992) The angiotensin AT2 receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase. Biochem Biophys Res Commun 183:206–211

    Article  PubMed  CAS  Google Scholar 

  • Braszko JJ 2002) AT(2) but not AT(1) receptor antagonism abolishes angiotensin II increase of the acquisition of conditioned avoidance responses in rats. Behav Brain Res 131:79–86

    Article  PubMed  CAS  Google Scholar 

  • Breigeiron MK, Morris M, Lucion AB, Sanvitto GL 2002) Effects of angiotensin II microinjected into medial amygdala on male sexual behavior in rat. Horm Behav 41:267–274

    Article  PubMed  CAS  Google Scholar 

  • Buckley JP 1972) Actions of angiotensin on the central nervous system. Fed Proc 4:1332–1337

    Google Scholar 

  • Buisson B, Bottari SP, de Gasparo M, Gallo-Payet N, Payet MD 1992) The angiotensin AT2 receptor modulates T-type calcium current in non-differentiated NGI08-15 cells. FEBS Lett 309:161–164

    Article  PubMed  CAS  Google Scholar 

  • Buisson B, Laflamme L, Bottari SP, de Gasparo M, Gallo Payet N, Payet MD 1995) A G protein is involved in the angiotensin AT2 receptor inhibition of the T-type calcium currents in non-differentiated NGI08-15 cells. J Biol Chem 270:1670–1674

    Article  PubMed  CAS  Google Scholar 

  • Chan RK, Chan YS, Wong TM 1991) Responses of cardiovascular neurons in the rostral ventrolateral medulla of the normotensive Wistar Kyoto and spontaneously hypertensive rats to iontophoretic application of angiotensin II. Brain Res 556:145–150

    Article  PubMed  CAS  Google Scholar 

  • Chandy K, Gutman GA (1995) Voltage-gated K+ channel genes. In: North RA (ed) Ligand and voltage-gated ion channels. CRC, Boca Raton, 1–71

    Google Scholar 

  • Chiu AT, Herblin WF, McCall DE, Ardecky RJ, Carini DJ, Duncia JV, Pease LJ, Wong PC, Wexler RR, Johnsin Al et al 1989) Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165:196–203

    Article  PubMed  CAS  Google Scholar 

  • Dampney RA, Hirooka Y, Potts PD, Head GA 1996) Functions of angiotensin peptides in the rostral ventrolateral medulla. Clin Exp Pharmacol Physiol Suppl 3:S105–111

    Article  PubMed  CAS  Google Scholar 

  • Dampney RA, Fontes MA, Hirooka Y, Horiuchi J, Potts PD, Tagawa T 2002) Role of angiotensin II receptors in the regulation of vasomotor neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol 5-6:467–472

    Article  Google Scholar 

  • Davisson RL, Oliverio MI, Coffman TM, Sigmund CD 2000) Divergent functions of angiotensin II receptor isoforms in the brain. J Clin Invest 106:103–106

    Article  PubMed  CAS  Google Scholar 

  • De Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T 2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    PubMed  Google Scholar 

  • Dewald M, Braun HA, Huber MT, Zwingmann D, Roth J, Voigt K 2002) Interactions of temperature and angiotensin II in paraventricular neurons of rats in vitro. Pflugers Arch 444:117–125

    Article  PubMed  CAS  Google Scholar 

  • Diz DI, Westwood B, Bosch SM, Ganten D, Ferrario C (1998)NK1 receptor antagonist blocks angiotensin II responses in renin transgenic rat medulla oblongata. Hypertension 31:473–479

    PubMed  CAS  Google Scholar 

  • Evans J, Sumners C, Gelband C 2001) Relief of Gaa inhibition may underlie angiotensin n stimulation of neuronal K+ current (abstract). Biophys J 79:548

    Google Scholar 

  • Felix D, Schlegel W 1978) Angiotensin receptive neurones in the subfornical organ. Structure-activity relations. Brain Res 149:107–116

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AV, Li Z 1996) Whole cell patch recordings from forebrain slices demonstrate angiotensin II inhibits potassium currents in subfornical organ neurons. Regul Pept 66:55–58

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons JT 1998) Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686

    PubMed  CAS  Google Scholar 

  • Fitzsimons JT, Simons BJ 1969) The effect on drinking in the rat of intravenous infusion of angiotensin, given alone or in combination with other stimuli of thirst. J Physiol 203:45–57

    PubMed  CAS  Google Scholar 

  • Fleegal MA, Sumners C 2003) Drinking behavior elicited by central injection of angiotensin: roles for proteinkinase C and Ca2+/calmodulin-dependent protein kinase II. Am J Physiol 258:R632–640

    Google Scholar 

  • Fogarty DJ, Matute C 2002) Angiotensin receptor-Iike immunoreactivity in adult brain white matter astrocytes and oligodendrocytes. Glia 35:131–146

    Article  Google Scholar 

  • Gallinat S, Busche S, Raizada MK, Sumners C (2000) The angiotensin II type 2 receptor: an enigma with multiple variations. Am J Physiol Endocrinol Metab 278:E357–E374

    PubMed  CAS  Google Scholar 

  • Gard PR (2002) The role of angiotensin II in cognition and behavior. Eur J Pharmacol 438:1–14

    Article  PubMed  CAS  Google Scholar 

  • Gebke E, Muller AR, Jurzak M, Gerstberger R (1998) Angiotensin II-induced calcium signalling in neuro ns and astrocytes of rat circumventricular organs. Neuroscience 85:509–520

    Article  PubMed  CAS  Google Scholar 

  • Gehlert DR, Gackenheimer SL, Reel JK, Lin HS, Steinberg MI (1990) Non-peptide angiotensin II receptor antagonists discriminate subtypes of 125I-angiotensin II binding sites in the rat brain. Eur J Pharmacol 187:123–126

    Article  PubMed  CAS  Google Scholar 

  • Gelband CH, Warth JD, Mason HS, Zhu M, Moore JM, Kenyon JL, Horowitz B, Sumners C (1999) Angiotensin II type 1 receptor-rnediated inhibition of K+ channel subunit kv2.2 in brain stem and hypothalamic neurons. Circ Res 84:352–359

    PubMed  CAS  Google Scholar 

  • Harding JW, Felix D (1987) Angiotensin-sensitive neurons in the rat paraventricular nucleus: relative potencies of angiotensin II and angiotensin III. Brain Res 410:130–134

    Article  PubMed  CAS  Google Scholar 

  • Harding JW, Stone LP, Wright JW (1981) The distribution of angiotens in II binding sites in rodent brain. Brain Res 205:265–274

    Article  PubMed  CAS  Google Scholar 

  • Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK (1995) Behavioral and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature 377:744–747v

    Article  PubMed  CAS  Google Scholar 

  • Hirooka Y, Head GA, Potts PD, Godwin SJ, Bendle RD, Dampney RA (1996) Medullary neurons activated by angiotensin II in the conscious rabbit. Hypertension 27:287–296

    PubMed  CAS  Google Scholar 

  • Horiuchi M, Hayashida W, Kambe T, Yamada T, Dzau VJ (1997) Angiotensin type 2 receptor dephosphorylates Bcl-Z by act ivating mitogen-activated protein kinase phos phatase-I and induces apoptosis. J Biol Chem 272:19022–19026

    Article  PubMed  CAS  Google Scholar 

  • Hu L, Zhu DN, Yu Z, Wang JQ, Sun ZJ, Yao T (2002) Expression of angiotens in II type 1 (AT(1)) receptor in the rostral ventrolateral medulla in rats. J Appl Physiol 92:2153–2161

    Article  PubMed  CAS  Google Scholar 

  • Huang XC, Richards EM, Sumners C (1995) Angiotensin II type 2 receptor-rnediated stimulation of protein phosphatase 2A in rat hypothalamic/brainstem neuronal eocultures. J Neurochem 65:2131–2137

    Article  PubMed  CAS  Google Scholar 

  • Huang XC, Richards EM, Sumners C (1996) Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotens in II type 2 receptors. J Biol Chem 271:15635–15641

    Article  PubMed  CAS  Google Scholar 

  • Huang XC, Deng T, Sumners C (1998) Angiotensin II stimulates activation of Fos-regulating kinase and c-Jun NH2-terminal kinase in neuronal cultures from rat brain. Endocrinology 139:245–251

    Article  PubMed  CAS  Google Scholar 

  • Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A, Niimura F, Ichikawa I, Hogan BL, Inagami T (1995) Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 377:748–750

    Article  PubMed  CAS  Google Scholar 

  • Iwai N, Inagami T (1992) Identification of two sub types in the rat type I angiotensin II receptor. FEBS Lett 298:257–260

    Article  PubMed  CAS  Google Scholar 

  • Jing J, Peretz T, Singer-Lahat D, Chikvashvili D, Thornhill WB, Lotan I (1997) Inactivation of a voltage-dependent K+ channel by beta subtype modulation by a phosphorylation-dependent interaction between dist al C terminus of alpha subunit and cytoskeleton. J Biol Chem 272:14021–14024

    Article  PubMed  CAS  Google Scholar 

  • Johnson AK, Thunhorst RL (1997) The neuro endocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front Neuroendocrinol 18:292–353

    Article  PubMed  CAS  Google Scholar 

  • Kakar SS, Sellers JC, Devor DC, Musgrove LC, Neill JD (1992) Angiotensin II type-1 receptor subtype cDNAs: differential tissue expression and hormonal regulation. Biochem Biophys Res Commun 183:1090–1096

    Article  PubMed  CAS  Google Scholar 

  • Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, Inagami T (1993) Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268:24543–24546

    PubMed  CAS  Google Scholar 

  • Kang J, Sumners C, Posner P (1993) Angiotensin II type 2 receptor-modulated changes in potassium currents in cultured neurons. Am J Physiol 265:C607–C616

    PubMed  CAS  Google Scholar 

  • Kang J, Posner P, Sumners C (1994) Angiotensin II type 2 receptor stimulation of neuronal K+ currents involves an inhibitory GTP binding protein. Am J Physiol 267:CI389–C1397

    Google Scholar 

  • Kang J, Richards EM, Posner P, Sumners C (1995) Modulation of the delayed rectifier K+ current in neurons by an angiotensin II type 2 receptor fragment. Am J Physiol 268:C278–C282

    PubMed  CAS  Google Scholar 

  • Kim D, Sladek CD, Aguado-Velasco C, Mathiasen JR (1995) Arachidonic acid activation of a new famIIy of K+ channels in cultured rat neuronal cells. J Physiol 484(Pt 3):643–660

    PubMed  CAS  Google Scholar 

  • Knowles WD, Phillips MI (1980) Angiotensin II responsive cells in the organum vasculosum lamina terminals (OVLT) recorded in hypothalamic brain slices. Brain Res 197:256–259

    Article  PubMed  CAS  Google Scholar 

  • Lee WJ, Kim KS, Yang EK, Lee JH, Lee EJ, Park JS, Kim HJ (1996) Effect of brain angiotensin II AT1, AT2 and cholinergic receptor antagonism on drinking in water-deprived rats. Regul Pept 66:41–46

    Article  PubMed  CAS  Google Scholar 

  • Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C (1997) Expression of angiotensin type1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol 18:383–439

    Article  PubMed  CAS  Google Scholar 

  • Levin G, Chikvashvili D, Singer-Lahat D, Peretz T, Thornhill WB, Lotan I (1996) Phosphorylation of a K+ channel alpha subunit modulates inactivation conferred by a beta subunit. Involvement of cytoskeleton. J Biol Chem 271:29321–29328

    Article  PubMed  CAS  Google Scholar 

  • Levitan IB (1999) Modulation of ion channels by protein phosphorylation. How the brain works. Adv Second Messenger Phosphoprotein Res 33:3–22

    PubMed  CAS  Google Scholar 

  • Li Z, Ferguson AV (1993) Angiotensin II responsiveness of rat paraventricular and subfornical organ neurons in vitro. Neuroscience 55:197–207

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Ferguson AV (1996) Electrophysiological properties of paraventricular magnocellular neurons in rat brain slices: modulation of IA by angiotensin II. Neuroscience 71:133–145

    Article  PubMed  CAS  Google Scholar 

  • Li YW, Guyenet PG (1995) Neuronal excitation by angiotensin II in the rostral ventrolateral medulla of the rat in vitro. Am J Physiol 268:R272–R277

    PubMed  CAS  Google Scholar 

  • Li YW, Guyenet PG (1996) Angiotensin II decreases a resting K+ conductance in rat bulbospinal neurons of the C1 area. Circ Res 78:274–282

    PubMed  CAS  Google Scholar 

  • Lu D, Yang H, Raizada MK (1996) Angiotens in II regulation of neuromodulation: downstream signaling mechanism from activation of mitogen-activated protein kinase. J Cell Biol 135:1609–1617

    Article  PubMed  CAS  Google Scholar 

  • Martens JR, Navarro-Polance R, Coppock EA, Nishiyama A, Parshely L, Grobaski TD, Tamkun MM (2000) Differential targeting of Shaker-like potassium channels to lipid rafts. J Biol Chem 275:7443–7446

    Article  PubMed  CAS  Google Scholar 

  • McKinley MJ, Alien AM, Mathai ML, May C, McAlIe RM, Oldfield BJ, Weisinger RS (2001) Brain angiotensin and body fluid homeostasis. Jpn J Physiol 51:281–289

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn FA, Quirion R, Saavedra JM, Aguilera G, Catt KJ (1984) Autoradiographic localization of angiotensin II receptors in rat brain. Proc NAT1 Acad Sci U S A 81:1575–1579

    Article  CAS  Google Scholar 

  • Meves H (1994) Modulation of ion channels by arachidonic acid. Prog Neurobiol 43:175–186

    Article  PubMed  CAS  Google Scholar 

  • Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ (1993) Expression cloning of type 2 angiotensin II receptor reveals a un iqu e class of seven-transmembrane receptors. J Biol Chem 268:24539–24542

    PubMed  CAS  Google Scholar 

  • Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE (1991) Isolation of a cDNA encoding the vascular type-I angiotensin II receptor. Nature 351:233–236

    Article  PubMed  CAS  Google Scholar 

  • Muscella A, Aloisi F, Marsigliante S, Levi G (2000) Angiotensin II modulates the activity of Na+, K+-ATPase in cultured rat astrocytes via the AT1 receptor and protein kinase C-delta activation. J Neurochem 74:1325–1331

    Article  PubMed  CAS  Google Scholar 

  • Nagatomo T, Inenaga K, Yamashita H (1995) Transient outward current in adult rat supraoptic neurones with slice patch-clamp technique: inhibition by angiotensin II. J Physiol 485(Pt 1):87–96

    PubMed  CAS  Google Scholar 

  • Nahmias C, Cazaubon SM, Briend-Sutren MM, Lazard D, Villageois P, Strosberg AD (1995) Angiotensin II AT2 receptors are functionally coupled to protein tyrosine dephosphorylation in N1E-115 neuroblastoma cells. Biochem J 306(Pt 1):87–92

    PubMed  CAS  Google Scholar 

  • Nouet S, Nahmias C (2000) Signal transduction from the angiotens in II AT2 receptor. Trends Endocrino Metab 11:1–6

    Article  CAS  Google Scholar 

  • Nuyt AM, Lenkei Z, Corvol P, Palkovits M, Llorens-Cortes C (2001) Ontogeny of angiotensin II type I receptor mRNAs in fetal and neonatal rat brain. J Comp Neurol 440:192–203

    Article  PubMed  CAS  Google Scholar 

  • Obermuller N, Unger T, Culman J, Gohlke P, de Gasparo M, Bottari SP (1991) Distribution of angiotensin II receptor subtypes in rat brain nuclei. Nurosci Lett 132:11–15

    Article  CAS  Google Scholar 

  • Ono K, Honda E, Inenaga K (2001) Angiotensin II induces inward current in subfornical organ neurones of rats. J Neuroendocrinol 13:517–523

    Article  PubMed  CAS  Google Scholar 

  • Pan SJ, Zhu M, Raizada MK, Sumners C, Gelband CH (2001) ANG II-mediated inhibition of neuronal delayed rectifier current: role of proteinkinase C-alpha. Am J Physiol Cell Physiol 281:C17–C23

    PubMed  CAS  Google Scholar 

  • Peretz T, Levin G, Moran O, Thornhill WB, Chikvashvili D, Lotan I (1996) Modulation by protein kinase C activation of rat brain delivery rectifier K+ channel expressed in Xenopusoocytes. FEBS Lett 381:71–76

    Article  PubMed  CAS  Google Scholar 

  • Phillips MI, Sumners C (1998) Angiotensin II in central nervous system physiology. Regul Pept 78:1–11

    Article  PubMed  CAS  Google Scholar 

  • Richards EM, Raizada MK, Gelband CH, Sumners C (1999) Angiotensin II type 1 receptor-modulated signaling pathways in neurons. Mol Neurobiol 19:25–41

    Article  PubMed  CAS  Google Scholar 

  • Rowe BP, Grove KL, Saylor DL, Speth RC (1990) Angiotensin II receptor subtypes in the rat brain. Eur J Pharmacol 186:339–342

    Article  PubMed  CAS  Google Scholar 

  • Rowland NE, Fregly MJ (1993) Brain angiotensin AT-2 receptor antagonism and water intake. Brain Res Bull 32:391–394

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM (1999) Emerging features of brain angiotens in receptors. Regul Pept 85:31–45

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, Matsuda Y, Inagami T (1991) Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351:230–233

    Article  PubMed  CAS  Google Scholar 

  • Seltzer AM, Zorad S, Saavedra JM (1995) Stimulation of angiotens in II AT1 receptors in rat median eminence increases phosphoinositide hydrolysis. Brain Res 705:24–30

    Article  PubMed  CAS  Google Scholar 

  • Sirett NE, McLean AS, Bray JJ, Hubbard JI (1977) Distribution of angiotensin II receptors in rat brain. Brain Res 122:299–312

    Article  PubMed  CAS  Google Scholar 

  • Song K, Allen AM, Paxinos G, Mendelsohn FA (1992) Mapping of angiotensin II receptor subtype heterogeneity in rat brain. J Comp Neurol 316:467–484

    Article  PubMed  CAS  Google Scholar 

  • Speth RC, Grove KL, Rowe BP (1991) Angiotensin II and the locus coeruleus. Prog Brain Res 88:217–226

    Article  PubMed  CAS  Google Scholar 

  • Stadler T, Veltmar A, Qadri F, Unger T (1992) Angiotensin II evokes noradrenaline release from the paravent ricular nucleus in conscious rats. Brain Res 569:117–122

    Article  PubMed  CAS  Google Scholar 

  • Stoll M, Unger T (2001) Angiotensin and its AT2 receptor: new insights into an old system. Regul Pept 99:175–182

    Article  PubMed  CAS  Google Scholar 

  • Suga T, Suzuki M, Suzuki M (1979) Effects of angiotensin II on the medullary neurons and their sensitivity to acetylcholine and catecholamines. Jpn J Pharmacol 4:541–552

    Article  Google Scholar 

  • Sumners C, Myers LM (1991) angiotensin II decreases cGMP levels in neuronal cultures from rat brain. Am J Physiol 260:C79–C87

    PubMed  CAS  Google Scholar 

  • Sumners C, Tang W, Zelezna B, Raizada MK (1991) angiotensin II receptor subtypes are coupled with distinct signal-transduction mechanisms in neurons and astrocytes from the rat brain. Proc NAT1 Acad Sci U S A 88:7567–7571

    Article  CAS  Google Scholar 

  • Sumners C, Zhu M, Gelband CH, Posner P (1996) angiotensin II type 1 receptor modulation of neuronal K+ and Ca2+ currents: intracellular mechanisms. Am J Physiol 271:C154–C163

    PubMed  CAS  Google Scholar 

  • Sumners C, Fleegal MA, Zhu M (2002) Angiotensin at1 receptor signalling in neurons. Clin Exp Pharacol Physiol 29:483–490

    Article  CAS  Google Scholar 

  • Sun C, Sumners C, Raizada MK (2002) Chronotropic action of angiotensin II in neurons via protein kinase C and CaMKII. Hypertension 39:562–566

    Article  PubMed  CAS  Google Scholar 

  • Tallant EA, Higson JT (1997) angiotensin II activates distinct signal transduction path ways in astrocytes isolated from neonatal rat brain. Glia 19:333–342

    Article  PubMed  CAS  Google Scholar 

  • Tanaka J, Hayashi Y, Sakamaki K, Okumura T, Nomura M (2001) Activation of the subfornical organ enhances extracellular noradrenaline concent rations in the hypothalamic paraventricular nucleus in the rat. Brain Res Bull 54:421–425

    Article  PubMed  CAS  Google Scholar 

  • Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD (1993) angiotensin II receptors and angiotensin II receptor antagonists. Pharmacaol Rev 45:205–251

    CAS  Google Scholar 

  • Tsutsumi K, Saavedra JM (1991) Characterization and development of angiotensin II receptor subtypes (AT1 and AT2)in rat brain. Am J Physiol 261:R209–R216

    PubMed  CAS  Google Scholar 

  • Van Houten M, Schiffrin EL, Mann JF, Posner BI, Boucher R (1980) Radioautographic localization of specific binding sites for blood-borne angiotensin II in the rat brain. Brain Res 186:480–485

    Article  PubMed  Google Scholar 

  • Von Bohlen und Halbach O, Albrecht D (1998) Mapping of angiotensin AT1 receptors in the rat limbic system. Regul Pept 78:51–56

    Article  Google Scholar 

  • Wang D, Gelband CH, Sumners C, Poser P (1997a) Mechanisms underlying the chronotropic effects of angiotensin II on cultured neurons from rat hypothalamus and brain stem. J Neurophysiol 78:1013–1020

    CAS  Google Scholar 

  • Wang D, Sumners C, Poser P, Gelband CH (1997b) A-type K+ current in neurons cultured from neonatal rat hypothalamus and brain stem: modulation by angiotensin II. J Neurophysiol 78:1021–1029

    CAS  Google Scholar 

  • Washburn DL, Ferguson AV (2001) Selective potentiation of N-type calcium channels by angiotensin II in rat subfornical organ neurones. J Physiol 536:667–675

    Article  PubMed  CAS  Google Scholar 

  • Whitebread S, Mele M, Kamber B, de Gasparo M (1989) Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 163:284–291

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Horiuchi M, Dzau VJ (1996) Angiotensin II type 2 receptor mediates programmed cell death. Proc NAT1 Acad Sci U S A 93:156–160

    Article  CAS  Google Scholar 

  • Yang H, Lu D, Yu K, Raizada MK (1996) Regulation of neuromodulatory actions of angiotensin II in the brain neurons by the Rasdependent mitogen-activated protein kinase pathway. J Neurosci 16:4047–4058

    PubMed  CAS  Google Scholar 

  • Yang SN, Lippoldt A, Iansson A, Phillips MI, Ganten D, Fuxe K (1997) Localization of angiotensin II AT1 receptor-like immunoreactivity in catecholaminergic neurons of the rat medulla oblongata. Neuroscience 81:503–515

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Pratt RE (1996) The AT2 receptor selectively associates with Gialpha2 and Gialpha3 in the rat fetus. J Biol Chem 271:15026–15033

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Herbert J (1997) Calcium channels mediate angiotensin II-induced drinking behavior and c-fos expression in the brain. Brain Res 778:206–214

    Article  PubMed  CAS  Google Scholar 

  • Zhu DN, Moriguchi A, Mikami H, Higaki J, Ogihara T (1998) Central amino acids mediate cardiovascular response to angiotensin II in the rat. Brain Res Bull 45:189–197

    Article  PubMed  CAS  Google Scholar 

  • Zhu M, Neubig RR, Wade SM, Posner P, Gelband CH, Sumners C (1997) Modulation of K+ and Ca2+ currents in cultured neurons angiotensin II type la receptor peptide. Am J Physiol 273:CI040–C1048

    Google Scholar 

  • Zhu M, Gelband CH, Moore JM, Posner P, Sumners C (1998) Angiotensin II type 2 receptor stimulation of neuron al delayed-rectifier potassium current involves phospholipase A2 and arachidonic acid. J Neurosci 18:679–686

    PubMed  CAS  Google Scholar 

  • Zhu M, Gelband CH, Posner P, Sumners C (1999) Angiotensin II decreases neuronal delayed rectifier potassium current: role of calcium/calmodulin-dependent protein kinase. J NeuroPhysiol 82:1560–1568

    PubMed  CAS  Google Scholar 

  • Zhu M, Natarajan R, Nadler JL, Moore JM, Gelband CH, Sumners C (2000) Angiotens in II increases neuronal delayed rectifier K(+) current: role of 12-lipoxygenase metabolites of arachidonic acid. J NeuroPhysiol 84:2494–2501

    PubMed  CAS  Google Scholar 

  • Zhu M, Sumners C, Gelband CH, Posner P (2001) Chronotropic effects of angiotensin II via type 2 receptors brain neurons. J NeuroPhysiol 85:2177–2183

    PubMed  CAS  Google Scholar 

  • Zucker IH (2002) Brain angiotensin II: new insights into its role in sympathetic regulation. Circ Res 90:503–505

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sumners, C., Richards, E.M. (2004). Angiotensin Receptor Signaling in the Brain: Ionic Currents and Neuronal Activity. In: Angiotensin Vol. II. Handbook of Experimental Pharmacology, vol 163 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18497-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18497-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40641-9

  • Online ISBN: 978-3-642-18497-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics