Skip to main content

Systolische und diastolische Funktion des gesunden Herzens

  • Chapter
Herzkrankheiten
  • 250 Accesses

Zusammenfassung

Um eine adäquate Blutversorgung der Organe -je nach ihrem Aktivitätsgrad — zu gewährleisten, müssen Herzleistung und periphere Kreislauffunktionen in optimaler Weise aufeinander abgestimmt sein. Pumpaktivität des Herzens, Füllungszustand des Gefäßsystems und Gefäßtonus bzw. Wandspannungen in den einzelnen Gefäßsegmenten müssen dauernd erfasst und ggf. berichtigt werden. Dazu steht eine breite Palette nervös-humoraler Regulationsmechanismen zur Verfügung, die fortlaufend Informationen aus Druck- und Volumenrezeptoren beziehen. Einfachstes Regulationsprinzip für die Herzleistung ist der Frank-Straub-Starling-Mechanismus. Er beinhaltet, dass das Herz seine Förderleistung innerhalb physiologischer Grenzen jeweils dadurch dem Angebot anpassen kann, dass es sein Schlagvolumen bei vermehrtem venösem Blutangebot und damit vergrößerter Füllung der Ventrikel erhöhen kann.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Asmar R (1999) Arterial stiffness and pulse wave velocity. Elsevier, Amsterdam

    Google Scholar 

  • Bassenge E (1996) Mechanik des intakten Herzens. In: Roskamm H (Hrsg) Herzkrankheiten. Springer, Berlin Heidelberg New York, S 55–79

    Chapter  Google Scholar 

  • Bassenge E, Busse R (1988) Endothelial modulation of coronary tone. Prog Cardiovasc Dis 30:349

    Google Scholar 

  • Bassenge E, Heusch G (1990) Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 116:77

    PubMed  CAS  Google Scholar 

  • Bell SP, Nyland L, Tischler MD et al. (2000) Alterations in the determinants of diastolic suction during pacing tachycardia. Cardiovasc Res 46:225–238

    Article  Google Scholar 

  • Beuckelmann DJ, Näbauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055

    Article  PubMed  CAS  Google Scholar 

  • Bloom WL, Ferris EB (1956) Negative ventricular diastolic pressure in beating heart studied in vitro and vivo. Proc Soc Exp Biol Med 98:451

    Google Scholar 

  • Böhme W (1936) Über den aktiven Anteil des Herzens an der Förderung des Venenblutes. Ergebn Physiol 38:251

    Article  Google Scholar 

  • Bowditch H (1871) Über die Eigentümlichkeit der Reizbarkeit, welche die Muskelfasern des Herzens zeigen. Ber Sachs Ges (Akad) Wiss 23:652–689

    Google Scholar 

  • Brecher GA (1956) Venous return. Grüne & Stratton, London

    Google Scholar 

  • Brecher GA (1958) Critical review of recent work on ventricular diastolic suction. Circulat Res 6:554

    Article  PubMed  CAS  Google Scholar 

  • Brecher GA, Galletti PM (1963) Functional anatomy of cardiac pumping. In: Hamilton WF, Dow P (eds) Handbook of physiology, Circulation 11. Am Physiol Soc, Washington

    Google Scholar 

  • Brutsaert DS, Sys SU (1989) Relaxation and diastole of the heart. Physiol Rev 69:1228

    PubMed  CAS  Google Scholar 

  • Brutsaert DL, Fransen P, Andries U et al. (1998) Cardiac endothelium and myocardial function. Cardiovasc Res 38:281–290

    Article  PubMed  CAS  Google Scholar 

  • Cazolla O, Freiburg A, Helmes M et al. (2000) Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 86:59–67

    Article  Google Scholar 

  • Devereux RB, Roman MJ, Liu JE et al. (2000) Congestive heart failure despite normal left ventricular systolic function in a population-based sample: the Strong Heart Study. Am J Cardiol 86:1090–1096

    Article  PubMed  CAS  Google Scholar 

  • Erbel R, Neumann T, Zeidan Z et al. (2002) Echokardiographische Diagnostik der diastolischen Herzinsuffizienz. Herz 27:99–106

    Article  PubMed  Google Scholar 

  • Frank O (1895) Zur Dynamik des Herzmuskels. Z Biol 32:370

    Google Scholar 

  • Gollwitzer-Meier K, Kramer K, Krüger E (1936) Zur Verschiedenheit der Herzenergetik und Herzdynamik bei Druck-und Volumenleistung. Pflugers Arch 237:68

    Article  CAS  Google Scholar 

  • Guyton AC, Cowley AW (1976) International review of physiology. Cardiovascular Physiology 11. Baltimore, University Park Press 9

    Google Scholar 

  • Hansen DE, Daughter GT, Alderman EL et al. (1988) Torsional deformation of the left ventricular midwall in human hearts with intramyocardial markers: regional heterogeneity and sensitivity to the inotropic effects of abrupt rate changes. Circ Res 62:941–952

    Article  PubMed  CAS  Google Scholar 

  • Hasenfuss G, Pieske B (2002) Calcium cycling in congestive heart failure. J Mol Cell Cardiol 34:951–969

    Article  PubMed  CAS  Google Scholar 

  • Hasenfuss G, Holubarsch C, Hermann HP et al. (1994) Influence of the force-frequency relationship on haemodynamics and left ventricular function in patients with non-failing hearts and in patients with dilated cardiomyopathy. Eur Heart J 15:164–170

    Article  PubMed  CAS  Google Scholar 

  • Heiss HW, Barmeyer J, Wink K et al. (1976) Studies on the regulation of myocardial blood flow in man. Basic Res Cardiol 71:658

    Article  PubMed  CAS  Google Scholar 

  • Henke E (1872) zit. bei: Böhme W (1936) Über den aktiven Anteil des Herzens an der Förderung des Venenblutes. Ergebn Physiol 38:251

    Google Scholar 

  • Higgins CB, Vatner SF, Braunwald E (1973) Parasympathetic control of the heart. Pharmacol Rev 25:119

    PubMed  CAS  Google Scholar 

  • Holubarsch C, Jacob R (1980) Die „Compliance“ des Herzens. Methodische Grundlagen und Grenzen für eine Bestimmung der Dehnbarkeit von Gesamtventrikel und Myokardgewebe. Med Welt 31:136

    PubMed  Google Scholar 

  • Holubarsch C, Alpert NR, Goulette R, Mulieri LA (1982) Heat production during hypoxic contracture of rat myocardium. Circ Res 51: 777–786

    Article  PubMed  CAS  Google Scholar 

  • Holubarsch C, Hasenfuss G, Blanchard E et al. (1986) Myothermal economy of rat myocardium, chronic adaptation versus acute intropism. Basic Res Cardiol 81(Suppl 1 ):95

    PubMed  Google Scholar 

  • Holubarsch C, Hasenfuss G, Schmidt-Schweda S et al. (1993) Angiotensin I and II exert inotropic effects in atrial but not in ventricular human myocardium. An in vitro study under physiological experimental conditions. Circulation 88:1228

    Article  PubMed  CAS  Google Scholar 

  • Holubarsch C, Hasenfuss G, Just H, Alpert NR (1994) Positive inotropism and myocardial energetics. Influence of beta receptor-agonistic stimulation, phosphodiesterase inhibition and ouabain. Cardiovasc Res 28:994

    Article  PubMed  CAS  Google Scholar 

  • Horwitz LD, Bishop VS (1972) Left ventricular pressure-dimension relationships in the conscious dog. Cardiovasc Res 6:163

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Meisner JS, Tsujioka K et al. (1986) Left ventricular filling dynamics: influence of left ventricular relaxation and left atrial pressure. Circulation 74:187–196

    Article  PubMed  CAS  Google Scholar 

  • Jacob R, Gülch R, Kissling G, Raff U (1973) Muskelphysiologische Grundlagen für die Beurteilung der Leistungsfähigkeit des Herzens. Z Ges Inn Med 28:1

    PubMed  CAS  Google Scholar 

  • Kalra PR, Moon JC, Coats AJ (2002) Do results of the ENABLE (Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart Failure) study spell the end for non-selective endothelin antagonism in heart failure? Int J Cardiol 85:195–197

    Article  PubMed  Google Scholar 

  • Kitzman DW, Higginbotham MB, Cobb Fre (1991) Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism. J Am Coll Cardiol 17:1065–1072

    Article  PubMed  CAS  Google Scholar 

  • Kissling G, Reuter K, Sieber G et al. (1972) Negative Inotropie von endogenem Acetylcholin beim Katzen-und Hühnerventrikelmyokard. Pflugers Arch 333:35

    Article  PubMed  CAS  Google Scholar 

  • Klocke FJ, Braunwald E, Ross JJ (1966) Oxygen cost of electrical activation of the heart. Circ Res 18:357–365

    Article  PubMed  CAS  Google Scholar 

  • Krasny R, Kammermeier H, Köhler J (1991 ) Biomechanics of valvular plane displacement of the heart. Basic Res Cardiol 86:572

    Article  PubMed  CAS  Google Scholar 

  • Lee JA, Allen DG (1993) Altering the strength of the heart: Basic mechanisms. Oxford Medical Publications, S 1

    Google Scholar 

  • Levy MN (1979) The cardiac and vascular factors that determine systemic blood flow. Circ Res 44:739

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Keweloh B, Güth K et al. (1998) Frequency-dependence of myocardial energetics in failing human myocardium as quantified by a new method for the measurement of oxygen consumption in muscle strip preparations. J Mol Cell Cardiol 30:1459–1470

    Article  PubMed  CAS  Google Scholar 

  • Nonogi H, Hess OM, Ritter M, Krayenbühl HP (1988) Diastolic properties of the normal left ventricle during supine exercise. Brit Heart J 60:30

    Article  PubMed  CAS  Google Scholar 

  • Parsons C, Porter KR (1966) Muscle relaxation: evidence for an intrafibrillar restoring force in vertebrate striated muscle. Science 153:426

    Article  PubMed  CAS  Google Scholar 

  • Patterson SW, Piper H, Starling FH (1914) Regulation of the heart beat. J Physiol Lond 48:465S

    Google Scholar 

  • Pieske B, Kretschmann B, Meyer M et al. (1995) Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 92:1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Pieske B, Schlotthauer K, Schattmann J et al. (1997) Ca2+-dependent and Ca2+-independent regulation of contractility in isolated human myocardium. Basic Res Cardiol 92(Suppl l):87–93

    Article  PubMed  Google Scholar 

  • Pieske B, Beyermann B, Breu V et al. (1999) Functional effects of endothelin and regulation of endothelin receptors in isolated human nonfailing and failing myocardium. Circulation 99:1802–1809

    Article  PubMed  CAS  Google Scholar 

  • Pouleur H, Covell JW, Ross J Jr (1979) Effects of alterations in aortic input impedance on the force-velocity-length relationships in the intact canine heart. Circulat Res 45:126

    Article  PubMed  CAS  Google Scholar 

  • Reindell H (1964) Beitrag der Klinik zur Dynamik des Herzens. Verb Dtsch Ges Inn Med 70:100

    CAS  Google Scholar 

  • Restorff W von, Holtz J, Bassenge E (1977) Exercise induced augmentation of myocardial oxygen extraction in spite of normal coronary dilatory capacity in dogs. Pflugers Arch 372:181

    Article  Google Scholar 

  • Roeske WR, Yamamura HI (1996) Autonomic control of the myocardium; muscarinic cholinergic receptor mechanisms. In: Shepherd JT, Vatner SF (eds) Nervous control of the heart. Harwood Academic Publishers, Amsterdam, pp 111–137

    Google Scholar 

  • Rushmer RF (1970) Functional anatomy of cardiac contraction. Cardiac dynamics, 3rd edn. Saunders, Philadelphia London

    Google Scholar 

  • Sonnenblick EH, Parmley WW, Urschel CW (1969) The contractile state of the heart as expressed by force-velocity relations. Am J Cardiol 23:488

    Article  PubMed  CAS  Google Scholar 

  • Strauss JD, Rüegg JC, Lues J (1993) In search of calcium sensitizers compounds, from subcellular models of muscle to in vivo positive inotropic action. Oxford Medical Publications, S 37

    Google Scholar 

  • Streeter DD Jr, Spotnitz HM, Patel DJ et al. (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circulat Res 24:339

    Article  PubMed  Google Scholar 

  • Stuber M, Scheidegger MB, Fischer SE (1999) Alterations in the local myocardial motion pattern in patients suffering from pressure overload due to aortic stenosis. Circulation: 100, 361–368

    Article  PubMed  CAS  Google Scholar 

  • Suga H, Sugawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 28:314–322

    Article  Google Scholar 

  • Tagawa H, Wang N, Narishige T et al. (1997) Cytosceletal mechanics in pressure-overload cardiac hypertrophy. Circ Res 80:281–289

    Article  PubMed  CAS  Google Scholar 

  • Trautwein W (1972) Erregungsphysiologie des Herzens. In: Gauer O, Kramer K, Jung R (Hrsg) Physiologie des Menschen, Bd 3. Urban & Schwarzenberg, München Berlin Wien

    Google Scholar 

  • Tyberg JV, Misbach GA, Glantz SA et al. (1978) A mechanism for shifts in the diastolic, left ventricular, pressure-volume curve: The tale of the pericardium. Europ J Cardiol 7(Suppl):163

    Google Scholar 

  • Wetterer E, Kenner Th (1968) Grundlagen der Dynamik des Arterienpulses. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wiggers CJ (1921) Studies on the consecutive phases of the cardiac cycle. I. The duration of the consecutive phases of the cardiac cycle and the criteria for their precise determination. Am J Physiol 56:415

    Google Scholar 

  • Witzleb E (1968) Venentonusreaktionen in kapazitiven Hautgefäßen bei Orthostase. Pflugers Arch 302:315

    Article  PubMed  Google Scholar 

  • Wüsten B (1979) Biophysics of myocardial perfusion. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier, Amsterdam, pp 199–244

    Google Scholar 

  • Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: Part II. Causal mechanisms and treatment. Circulation 105:1503–1508

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bassenge, E., Pieske, B. (2004). Systolische und diastolische Funktion des gesunden Herzens. In: Roskamm, H., Neumann, FJ., Kalusche, D., Bestehorn, HP. (eds) Herzkrankheiten. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18649-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18649-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62220-5

  • Online ISBN: 978-3-642-18649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics