Skip to main content

Multi-Dressing Four-Wave Mixing Processes in Confined and Non-confined Atomic System

  • Chapter
Coherent Control of Four-Wave Mixing

Abstract

Other than generating various four-wave mixing (FWM) processes, multilevel atomic system can also be used to generate co-existing FWM and sixwave mixing (SWM) processes with specially-designed spatial patterns and phase-watching conditions for laser beams. Making use of electro magnetically induced transparency (EIT) windows, and induced atomic coherence, the FWM and SWM signals can be made to be very efficient and pass through the dense atomic medium. When the relative phase between different multiwave mixing processes is tuned, frequency, spatial, and temporal interferences can occur between two different wave-mixing processes. In such cases, FWM and SWM signals are modulated with the phase difference. In this chapter, using phase-control between FWM and SWM channels in a four-level atomic system, we describe temporal and spatial interference between these two high-order nonlinear optical processes. Efficient and co-existing FWM and SWM signals are produced in the same EIT window via atomic coherence. On the other hand, we present the interplay between FWM, SWM, and eight-wave mixing (EWM) resulting from atomic coherence in multi-level atomic systems. FWM with three kinds of dual-dressed schemes (nested, sequential, and parallel schemes), SWM with the quadruply nested dressed, and EWM with the parallel combination of two nested dressed schemes coexisting synchronously in a multi-dressed EIT system were well described. At last, we also investigated the coexisting FWM, SWM and EWM in ultra-thin, micrometer and long cells. Investigations of these multi-dressing schemes and interactions are very useful to understand and control the generated high-order nonlinear optical signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen C, Yin Y, Elliott D S. Interference between optical-transitions. Phys Rev Lett, 1990 64: 507–510.

    Article  ADS  Google Scholar 

  2. Dupont E, Corkum P B, Liu H C, et al. Phase-controlled currents in semiconductors. Phys Rev Lett, 1995, 74: 3596–3599.

    Article  ADS  Google Scholar 

  3. Zhu L, Kleiman V, Li X N, et al. Coherent laser control of the product distribution obtained in the photoexcitation of hi. Science, 1995, 270: 77–80.

    Article  ADS  Google Scholar 

  4. Ohmori K, Sato Y, Nikitin E E, et al. High-precision molecular wave-packet interferometry with HgAr dimers. Phys Rev Lett, 2003, 91: 243003.

    Article  ADS  Google Scholar 

  5. Gunawardena M, Elliott D S. Atomic homodyne detection of weak atomic transitions. Phys Rev Lett, 2007, 98: 043001.

    Article  ADS  Google Scholar 

  6. Yamazaki R, Elliott D S. Observation of the phase lag in the asymmetric photoelectron angular distributions of atomic barium. Phys Rev Lett, 2007, 98: 053001.

    Article  ADS  Google Scholar 

  7. Rabitz H, de Vivie-Riedle R, Motzkus M, et al. Chemistry-Whither the future of controlling quantum phenomena. Science, 2000, 288: 824–828.

    Article  ADS  Google Scholar 

  8. Rice S A, Zhan M. Optical Control of Molecular Dynamics. New York: Wiley, 2000.

    Google Scholar 

  9. Du S W, Wen J M, Rubin M, et al. Four-wave Mixing and biphoton generation in a two-level system. Phys Rev Lett, 2007, 98: 053601.

    Article  ADS  Google Scholar 

  10. Zhang Y P, Xiao M. Enhancement of six-wave mixing by atomic coherence in a four-level inverted Y system. Appl Phys Lett, 2007, 90:111104.

    Article  ADS  Google Scholar 

  11. Zhang Y P, Brown A W, Xiao M. Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows. Phys Rev Lett, 2007, 99: 123603.

    Article  ADS  Google Scholar 

  12. Michinel H, Paz-Alonso M J, Perez-Garcia V M. Turning light into a liquid via atomic coherence. Phys Rev Lett, 2006, 96: 023903.

    Article  ADS  Google Scholar 

  13. Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology. Nature, 2002, 416: 233–237.

    Article  ADS  Google Scholar 

  14. Wen J M, Du S G, Zhang Y P, et al. Nonclassical light generation via a four-level inverted-Y system. Phys Rev A, 2008, 77: 033816.

    Article  ADS  Google Scholar 

  15. Hang C, Li Y, Ma L and Huang G X. Three-way entanglement and threequbit phase gate based on a coherent six-level atomic system. Phys Rev A, 2006, 74: 012319.

    Article  ADS  Google Scholar 

  16. Zhang Y P, Khadka U, Anderson B, et al. Temporal and spatial interference between four-wave mixing and six-wave mixing channels. Phys Rev Lett, 2009, 102: 013601.

    Article  ADS  Google Scholar 

  17. Gea-Banacloche J, Li Y, Jin S, et al. Electromagnetically Induced Transparency in ladder-type inhomogeneously broadened media: Theory and experiment. Phys Rev A, 1995, 51: 576–584.

    Article  ADS  Google Scholar 

  18. Boyd R W. Nonlinear Optics. New York: Academic Press, 1992.

    Google Scholar 

  19. Anderson B, Zhang Y P, Khadka U, et al. Spatial interference between fourand six-wave mixing signals. Opt Lett, 2008, 33: 2029–2031.

    Article  ADS  Google Scholar 

  20. Wang H, Goorskey D, Xiao M. Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system. Phys Rev Lett, 2001, 87: 073601.

    Article  ADS  Google Scholar 

  21. Harris S E. Electromagnetically induced transparency. Phys Today, 1997, 50: 36–42; Xiao M, Li Y, Jin S, et al. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys Rev Lett, 1995, 74: 666–669.

    Article  Google Scholar 

  22. Koch M, Feldmann J, Plessen G V, et al. Quantum beats versus polarization Interference-an experimental distinction. Phys Rev Lett, 1992, 69: 3631–3634.

    Article  ADS  Google Scholar 

  23. DeBeer D, Usadi E, Hartmann S R. Attosecond beats in sodium vapor. Phys Rev Lett, 1998, 60: 1262–1266; Ma H, de Araujo C B. Interference between 3rd-oder and 5th-order polarizations in semiconductor-doped glasses. Phys Rev Lett, 1993 71: 3649–3652.

    Article  ADS  Google Scholar 

  24. Zhang Y P, de Araujo C B, Eyler E E. Higher-order correlation on polarization beats in Markovian stochastic fields. Phys Rev A, 2001, 63: 043802; Zhang Y P, Gan C L, Song J P, et al. Coherent laser control in attosecond sum-frequency polarization beats using twin noisy driving fields. Phys Rev A, 2005, 71: 023802; Zhang Y P, Gan C L, Li L, et al. Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights. Phys Rev A, 2005, 72: 013812.

    Article  ADS  Google Scholar 

  25. Fu P M, Mi X, Yu Z H, et al. Ultrafast modulation spectroscopy in a cascade 3-level system. Phys Rev A, 1995, 52: 4867–4870; Sun J, Zuo Z C, Mi X, et al. Two-photon resonant four-wave mixing in a dressed atomic system. Phys Rev A, 2004, 70: 053820; Zhang Y P, Gan C L, Xiao M. Modified two-photon absorption and dispersion of ultrafast third-order polarization beats via twin noisy driving fields. Phys Rev A, 2006, 73: 053801.

    Article  ADS  Google Scholar 

  26. Hemmer P R, Katz D P, Donoghue J, et al. Efficient low-intensity opticalphase conjugation based on coherent population trapping in sodium. Opt Lett, 1995, 20: 982–984; Li Y, Xiao M. Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms. Opt Lett, 1996, 21: 1064–1066; Lu B, Burkett W H, Xiao M. Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping. Opt Lett, 1998, 23: 804–806.

    Article  ADS  Google Scholar 

  27. Kang H, Hernandez G, Zhu Y F. Slow-light six-wave mixing at low light intensities. Phys Rev Lett, 2004, 93: 073601; Zuo Z C, Sun J, Liu X, et al. Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry. Phys Rev Lett, 2006, 97: 193904.

    Article  ADS  Google Scholar 

  28. Braje D A, Balic V, Goda S, et al. Frequency mixing using electromagnetically induced transparency in cold atoms. Phys Rev Lett, 2004, 93: 183601; Kang H, Hernandez G, Zhang J P, et al. Phase-controlled light switching at low light levels. Phys Rev A, 2006, 73: 011802(R).

    Article  ADS  Google Scholar 

  29. Ulness D J, Kirkwood J C, Albrecht A C. Competitive events in fifth order time resolved coherent Raman scattering: Direct versus sequential processes. J Chem Phys,1998, 108: 3897–3902; Ulness D J. On the role of classical field time correlations in noisy light spectroscopy: Color locking and a spectral filter analogy. J Phys Chem A, 2003, 107: 8111–8123; Kirkwood J C, Albrecht A C, Ulness D J. Fifth-order nonlinear Raman processes in molecular liquids using quasi-cw noisy light. I Theory J Chem Phys, 1999, 111: 253–271.

    Article  ADS  Google Scholar 

  30. Garrett W R, Moore M A, Hart R C, et al. Suppression effects in stimulated hyper-raman emissions and parametric 4-wave-mixing in sodium vapor. Phys Rev A, 1992, 45: 6687–6709.

    Article  ADS  Google Scholar 

  31. Qi J, Lazarov G, Wang X, et al. Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules. Phys Rev Lett, 1999, 83: 288–291; Qi J, Spano F C, Kirova T, et al. Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency. Phys Rev Lett, 2002, 88: 173003.

    Article  ADS  Google Scholar 

  32. Deng L, Kozuma M, Hagley E W, et al. Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves. Phys Rev Lett, 2002, 88: 143902.

    Article  ADS  Google Scholar 

  33. Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys, 2005, 77: 633–673.

    Article  ADS  Google Scholar 

  34. Zibrov A S, Matsko A B, Kocharovskaya O, et al. Transporting and time reversing light via atomic coherence. Phys Rev Lett, 2002, 88: 103601; Rostovtsev Y V, Sariyanni Z E, Scully M O. Electromagnetically induced coherent backscattering. Phys Rev Lett, 2006, 97: 113001.

    Article  ADS  Google Scholar 

  35. Balic V, Braje D A, Kolchin P, et al. Generation of paired photons with controllable waveforms. Phys Rev Lett, 2005, 94: 183601; Kolchin P, Du S W, Belthangady C, et al. Generation of narrow-bandwidth paired photons: Use of a single driving laser. Phys Rev Lett, 2006, 97: 113602.

    Article  ADS  Google Scholar 

  36. Zhang Y P, Anderson B, Xiao M, Coexistence of four-wave, six-wave and eight-wave mixing processes in multi-dressed atomic systems. J Phys B 41 (2008) 045502.

    Article  ADS  Google Scholar 

  37. Zhang Y P, Brown A W, Xiao M. Observation of interference between fourwave mixing and six-wave mixing. Opt Lett, 2007, 32: 1120–1122; Zhang Y P, Xiao M. Generalized dressed and doubly-dressed multiwave mixing. Opt Express, 2007, 15: 7182–7189.

    Article  ADS  Google Scholar 

  38. Wu Y, Saldana J, Zhu Y F. Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency. Phys Rev A, 2003, 67: 013811.

    Article  ADS  Google Scholar 

  39. Gea-Banacloche J, Li Y, Jin S, et al. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media — theory and experiment Phys Rev A, 1995, 51: 576–584.

    Article  ADS  Google Scholar 

  40. Yan M, Rickey E G, Zhu Y F. Observation of doubly dressed states in cold atoms. Phys Rev A, 2001, 64: 013412.

    Article  ADS  Google Scholar 

  41. Wilson E A, Manson N B, Wei C. Perturbing an electromagnetically induced transparency in a Lambda system using a low-frequency driving field. II Fourlevel system. Phys Rev A 72 (2005) 063814.

    Article  ADS  Google Scholar 

  42. Li C B, Zhang Y P, Nie Z Q. Controlled Multi-wave mixing via interacting dark states in a five-level system. Opt Commun, 2010, 283: 2918–2928.

    Article  ADS  Google Scholar 

  43. Drampyan R, Pustelny S, Gawlik W. Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization. Phys Rev A 80, (2009) 033815; Joshi A, Xiao M. Phase gate with a four-level inverted-Y system. Phys Rev A 72 (2005) 062319; Joshi A, Xiao M. Generalized dark-state polaritons for photon memory in multilevel atomic media. Phys Rev A 71 (2005) 041801.

    Article  ADS  Google Scholar 

  44. Han Y, Liu Y, Zhang C, et al. Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system. Phys Rev A 77 (2008) 023824; Rebic S, Vitali D, Ottaviani C, et al. Polarization phase gate with a tripod atomic system. Phys Rev A 70 (2004) 032317.

    Article  ADS  Google Scholar 

  45. Yang L J, Zhang L S, Li X L, et al. Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance. Phys Rev A 72 (2005) 053801; Wasik G, Gawlik W, Zachorowski J, et al. Competition of dark states: Optical resonances with anomalous magnetic field dependence. Phys Rev A 64 (2001) 051802.

    Article  ADS  Google Scholar 

  46. Chalupczak W, Gawlik W, Zachorowski J. 4-wave-mixing in strongly driven 2-level systems. Phys Rev A 49 (1994) 4895–4901.

    Article  ADS  Google Scholar 

  47. Nie Z Q, Zheng H B, Li P Z, et al. Interacting multiwave mixing in a five-level atomic system. Phys Rev A 77 (2008) 063829.

    Article  ADS  Google Scholar 

  48. Zhang Y P, Anderson B, Xiao M. Efficient energy transfer between fourwave-mixing and six-wave-mixing processes via atomic coherence. Phys Rev A, 77, 061801(R) (2008).

    ADS  Google Scholar 

  49. Romer R H, Dicke R H. New technique for high-resolution microwave spectroscopy. Phys Rev 99, 532–536 (1955); Firstenberg O, Shuker M, Davidson N, et al. Elimination of the Diffraction of Arbitrary Images Imprinted on Slow Light. Phys Rev Lett 102, 043601 (2009); Ai B, Glassner D S, Knize R J. Enhancement of degenerate 4-wave-mixing by atom-wall collisions in atomic vapors. Phys Rev A 50, 3345–3348 (1994).

    Article  ADS  Google Scholar 

  50. Briaudeau S, Bloch D, Ducloy M. Sub-Doppler spectroscopy in a thin film of resonant vapor. Phys Rev A 59, 3723–3735 (1999).

    Article  ADS  Google Scholar 

  51. Haroche S. Fundamental Systems in Quantum Optics, edited by J. Dalibard, J-M. Raimond, J. Zinn-Justin (North-Holland, 1990).

    Google Scholar 

  52. Dutier G, Saltiel S, Bloch D, et al. Revisiting optical spectroscopy in a thin vapor cell: mixing of reflection and transmission as a Fabry-Perot microcavity effect. J Opt Soc Am B 20, 793–800 (2003); Andreeva C, Cartaleva S, Petrov L, et al. Saturation effects in the sub-Doppler spectroscopy of cesium vapor confined in an extremely thin cell. Phys Rev A 76, 013837 (2007).

    Article  ADS  Google Scholar 

  53. Li Y Q, Jin S Z, Xiao M. Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms. Phys Rev A 51, 1754–1757 (1995).

    Article  ADS  Google Scholar 

  54. Petrosyan D, Malakyan Y P. Electromagnetically induced transparency in a thin vapor film. Phys Rev A 61, 053820 (2000); Failache H, Lenci L, Lezama A, et al. Theoretical study of dark resonances in micrometric thin cells. Phys Rev A 76, 053826 (2007).

    Article  ADS  Google Scholar 

  55. Sarkisyan D, Varzhapetyan T, Sarkisyan A, et al. Spectroscopy in an extremely thin vapor cell: Comparing the cell-length dependence in fluorescence and in absorption techniques. Phys Rev A 69, 065802 (2004); Sargsyan A, Sarkisyan D, Papoyan A. Dark-line atomic resonances in a submicron-thin Rb vapor layer. Phys Rev A 73, 033803 (2006); Firstenberg O, Shuker M, Pugatch R, et al. Theory of thermal motion in electromagnetically induced transparency: Effects of diffusion, Doppler broadening, and Dicke and Ramsey narrowing. Phys Rev A 77, 043830 (2008).

    Article  ADS  Google Scholar 

  56. Wu Y, Deng L. Ultraslow optical solitons in a cold four-state medium. Phys Rev Lett 93, 143904 (2004).

    Article  ADS  Google Scholar 

  57. Zhang Y P, Brown A W, Gan C L, et al. Intermixing between four-wave mixing and six-wave mixing in a four-level atomic system. Phys J B. 40, 3319–3329 (2007); Zuo Z C, Sun J, Liu X, et al. Two-photon resonant four-wave mixing in a dressed atomic system: Polarization interference in a Doppler-broadened system. Phys Rev A 75, 023805 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y., Nie, Z., Xiao, M. (2011). Multi-Dressing Four-Wave Mixing Processes in Confined and Non-confined Atomic System. In: Coherent Control of Four-Wave Mixing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19115-2_4

Download citation

Publish with us

Policies and ethics