Skip to main content

“Living Syringes”: Use of Hematophagous Bugs as Blood Samplers from Small and Wild Animals

  • Chapter
  • First Online:
Nature Helps...

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 1))

Abstract

Sampling of blood from small and/or wild animals is very difficult since the animals are stressed strongly and can be severely affected by conventional sampling and/or anesthesia. Triatomines are the largest blood-sucking insects and feed on all warm-blooded animals including warm amphibia and reptiles. These insects develop through five larval instars which ingest increasing amounts of blood which is stored in the distensible stomach. There it is concentrated by the withdrawal of the fluid components and remains essentially undigested. Since the blood can be withdrawn easily with a syringe and used for determination of blood and physiological parameters and for the identification of pathogens, triatomines offer a noninvasive method to obtain blood samples. Especially larvae of Rhodnius prolixus, Triatoma infestans, and Dipetalogaster maxima are used as “living syringes.” In this review we summarize the application of this methodology and its advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amino R, Porto RM, Chammas R, Egami MI, Schenkman S (1998) Identification and characterization of a sialidase released by the salivary gland of the hematophagous insect Triatoma infestans. J Biol Chem 273:24575–24582

    Article  PubMed  CAS  Google Scholar 

  • Amino R, Martins RM, Procopio J, Hirata IY, Juliano MA, Schenkman S (2002) Trialysin, a novel pore-forming protein from saliva of hematophagous insects activated by limited proteolysis. J Biol Chem 277:6207–6213

    Article  PubMed  CAS  Google Scholar 

  • Andrade BB, Teixeira CR, Barral A, Barral-Netto M (2005) Haematophagous arthropod saliva and host defense system: a tale of tear and blood. Ann Acad Bras Cienc 77:665–693

    Article  CAS  Google Scholar 

  • Arnold JM, Oswald SA, Voigt CC, Palme R, Braasch A, Bauch C, Becker PH (2008) Taking the stress out of the blood collection; comparison of field blood-sampling techniques for analysis of baseline corticosterone. J Avian Biol 39:588–592

    Article  Google Scholar 

  • Assumpção TCF, Francischetti IMB, Andersen JF, Schwarz A, Santana JM, Ribeiro JMC (2008) An insight into the sialome of the bood-sucking bug Triatoma infestans, a vector of Chagas’ disease. Insect Biochem Mol Biol 38:213–232

    Article  PubMed  CAS  Google Scholar 

  • Azambuja P, Guimarães JA, Garcia ES (1983) Haemolytic factor from the crop of Rhodnius prolixus: evidence and partial characterization. J Insect Physiol 29:833–837

    Article  Google Scholar 

  • Baer GM (1966) A method for bleeding small mammals. J Mammal 47:340–341

    Article  Google Scholar 

  • Baer GM, McLean RG (1972) A new method of bleeding small and infants bats. J Mammal 53:231–232

    Article  PubMed  CAS  Google Scholar 

  • Bähnisch E (2011) Parasitämie, Stress-Parameter und Fremdgehrate von Kohlmeisen (Parus major) in unterschiedlichen Habitaten. Dissertation, Universität Duisburg-Essen

    Google Scholar 

  • Barreto AC, Prata AR, Marsden PD, Cuba CC, Trigueira CP (1981) Aspectos biológicos e criaçáo em massa de Dipetalogaster maximus (Uhler, 1894) (Triatominae). Rev Inst Med Trop São Paulo 23:18–27

    Google Scholar 

  • Barros VC, Assumpção JG, Cadete AM, Santos VC, Cavalcante RR, Araújo RN, Pereira MH, Gontijo NF (2009) The role of salivary and intestinal complement system inhibitors in the midgut protection of triatomines and mosquitoes. PLoS One 4(6):e6047

    Article  PubMed  CAS  Google Scholar 

  • Barrozo RB, Lazzari CR (2004) The response of the blood-sucking bug Triatoma infestans to carbon dioxide and other host odours. Chem Senses 29:319–329

    Article  PubMed  Google Scholar 

  • Barrozo RB, Lazzari CR (2006) Orientation response of haematophagous bugs to CO2: the effect of the temporal structure of the stimulus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:827–831

    Article  PubMed  CAS  Google Scholar 

  • Barrozo RB, Minoli SA, Lazzari CR (2004) Circadian rhythm of behavioural responsiveness to carbon dioxide in the blood-sucking bug Triatoma infestans (Heteroptera: Reduviidae). J Insect Physiol 50:249–254

    Article  PubMed  CAS  Google Scholar 

  • Bauch C, Kreutzer S, Becker PH (2010) Breeding experience affects condition: blood metabolite levels over the course of incubation in a seabird. J Comp Phys B 180:835–845

    Article  CAS  Google Scholar 

  • Bauer PG (1981) Ultrastrukturelle und physiologische Aspekte des Mitteldarms von Rhodnius prolixus Stal (Insecta, Heteroptera). Dissertation, Universität Basel

    Google Scholar 

  • Becker PH, Voigt CC, Arnold JM, Nagel R (2005) A non-invasive technique to bleed incubating birds without trapping: a blood-sucking bug in a hollow egg. J Ornithol 147:115–118

    Article  Google Scholar 

  • Brumpt E (1914) Le xénodiagnostic. Application au diagnostic de quelques infection parasitaires et in particulier à la trypanosome de Chagas. Bull Soc Path Exot 77:706–710

    Google Scholar 

  • Cabello DR, Lizano E, Valderrama A (1987) Estadísticas vitales de Rhodnius neivai Lent, 1953 (Hemiptera: Reduviidae) en condiciones experimentales. Mem Inst Oswaldo Cruz 82:511–524

    Article  PubMed  CAS  Google Scholar 

  • Canavoso LE, Frede S, Rubiolo ER (2004) Metabolic pathways for dietary lipids in the midgut of hematophagous Panstrongylus megistus (Hemiptera: Reduviidae). Insect Biochem Mol Biol 34:845–854

    PubMed  CAS  Google Scholar 

  • Carvalho-Pinto CJ, Grisard EC, Loroza ES, Steindel M (2000) Ecological and behavioral aspects of Triatoma klugi, a new triatomine species recently described from Rio Grande do Sul State, Brazil. Mem Inst Oswaldo Cruz 95(Suppl 2):336–337

    Google Scholar 

  • Cavalcante RR, Pereira MH, Gontijo NF (2003) Anti-complement activity in the saliva of phlebotomine sand flies and other haematophagous insects. Parasitology 127:87–93

    Article  PubMed  CAS  Google Scholar 

  • Corrêa RR (1954) Alguns dados sôbre a criação de Triatomíneos em laboratório. (Hemiptera Reduviidae). Folia Clin Biol 22:51–56

    Google Scholar 

  • Dan A, Pereira MH, Pesquero JL, Diotaiuti L, Beirão PS (1999) Action of the saliva of Triatoma infestans (Heteroptera: Reduviidae) on sodium channels. J Med Entomol 36:875–879

    PubMed  CAS  Google Scholar 

  • Deane MP (1948) Um método para manter colônias de triatomídeos em laboratórios. Rev Serv Esp Saúde Públ 2:493–500

    Google Scholar 

  • Dias E (1938) Criação de triatomideos no laboratorio. Mem Inst Oswaldo Cruz 33:407–412

    Google Scholar 

  • Dias E (1955) Notas sôbre o tempo de evolução de algumas espécies de triatomíneos em laboratório. Rev Bras Biol 15:157–158

    Google Scholar 

  • Dias JCP, Schofield CJ (1999) The evolution of Chagas disease (American trypanosomiasis) control after 90 years since Carlos Chagas discovery. Mem Inst Oswaldo Cruz 94(Suppl 1):103–121

    Article  PubMed  Google Scholar 

  • Eichler S, Schaub GA (1998) The effects of aposymbiosis and of an infection with Blastocrithidia triatomae (Trypanosomatidae) on the tracheal system of the reduviid bugs Rhodnius prolixus and Triatoma infestans. J Insect Physiol 44:131–140

    Article  PubMed  CAS  Google Scholar 

  • Eichler S, Schaub GA (2002) Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp Parasitol 100:17–27

    Article  PubMed  CAS  Google Scholar 

  • Ferreira RA, Lazzari CR, Lorenzo MG, Pereira MH (2007) Do haematophagous bugs assess skin surface temperature to detect blood vessels? PLoS ONE 2(9):e932

    Article  PubMed  Google Scholar 

  • Francischetti IMB, Ribeiro JMC, Champagne D, Andersen J (2000) Purification, cloning, expression, and mechanism of action of a novel platelet aggregation inhibitor from the salivary gland of the blood-sucking bug, Rhodnius prolixus. J Biol Chem 275:12639–12650

    Article  PubMed  CAS  Google Scholar 

  • Francischetti IMB, Andersen JF, Ribeiro JMC (2002) Biochemical and functional characterization of recombinant Rhodnius prolixus platelet aggregation inhibitor 1 as a novel lipocalin with high affinity for adenosine diphosphate and other adenine nucleotides. Biochemistry 41:3810–3818

    Article  PubMed  CAS  Google Scholar 

  • Galvão C, Carcavallo R, da Silva RD, Jurberg J (2003) A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa 202:1–36

    Google Scholar 

  • Garcia ES, de Azambuja P, Contreras VT (1984) Large-scale rearing of Rhodnius prolixus and preparation of metacyclic trypomastigotes of Trypanosoma cruzi. In: Morel CM (ed) Genes and antigens of parasites, 2nd edn. Fundação Oswaldo Cruz, Rio de Janeiro, pp 43–46

    Google Scholar 

  • Garcia ES, Genta FA, de Azambuja P, Schaub GA (2010) Interactions of intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol 26:499–505

    Article  PubMed  CAS  Google Scholar 

  • Gardiner BOC, Maddrell SHP (1972) Techniques for routine and large-scale rearing of Rhodnius prolixus Stål (Hem., Reduviidae). Bull Entomol Res 61:505–515

    Article  Google Scholar 

  • Geigy R, Kraus C (1952) Rüssel und Stechakt von Rhodnius prolixus. Acta Trop 9:272–276

    PubMed  CAS  Google Scholar 

  • Gómez-Núñez JC (1964) Mass rearing of Rhodnius prolixus. Bull World Health Org 31:565–567

    PubMed  Google Scholar 

  • Guernstein PG, Guerin PM (2001) Olfactory and behavioural responses of the blood-sucking bug Triatoma infestans to odours of vertebrate hosts. J Exp Biol 204:585–597

    Google Scholar 

  • Habicher A (2009) Behavioural cost minimisation and minimal invasive blood-sampling in meerkats (S. suricatta, Herpestidae). Dissertation, Universität Köln

    Google Scholar 

  • Hase A (1932) Beobachtungen an venezolanischen Triatoma-Arten, sowie zur allgemeinen Kenntnis der Familie der Triatomidae (Hemipt.-Heteropt.). Z Parasitenkd 4:585–652

    Article  Google Scholar 

  • Hoffman DR (1987) Allergy to biting insects. Clin Rev Allergy 5:177–190

    PubMed  CAS  Google Scholar 

  • Hoffmann H, Voigt CC, Thomsen R (2005) Patentschrift: DE102004004066B32005.06.09 Vorrichtung zur minimal-invasiven Blutentnahme bei Tieren mittels blutsaugender Raubwanzen. Deutsches Patent- und Markenamt

    Google Scholar 

  • Hubmer I, Kotrba R, Stadler A, Schwarzenberger F (2010) Minimally invasive pregnancy monitoring in captive elands (Taurotragus oryx) – faecal steroid hormone metabolites and blood sucking bugs (Dipetalogaster maxima). In: Wibbelt G (ed) Proceedings of the International Conference on Diseases of Zoo and Wild Animals 2010, Madrid, pp 200–203

    Google Scholar 

  • Hubmer I, Kotrba R, Stadler A, Schwarzenberger F (in press) Hormonal study of captive female elands (Taurotragus oryx): analysis of the steroid hormones in plasma and steroid hormone metabolites in feces. Theriogenology

    Google Scholar 

  • Huebner E (2007) The Rhodnius Genome Project: the promises and challenges it affords in our understanding of reduviid biology and their role in Chagas’ transmission. Comp Biochem Physiol 148(Suppl 1):S130

    Google Scholar 

  • Janowski S (2010) Erste Ansätze zur populationsgenetischen Untersuchung von mainfränkischen Wiesenweihen (Circus pygargus) mit genetischen Markern unter Einsatz von Raubwanzen zur Blutgewinnung. Diploma thesis, Universität Heidelberg

    Google Scholar 

  • Jensen C, Schaub GA (1991) Development of Blastocrithidia triatomae (Trypanosomatidae) in Triatoma infestans after vitamin B-supplementation of the blood-diet of the bug. Eur J Protistol 27:17–20

    Google Scholar 

  • Kaneko Y, Shojo H, Yuda M, Chinzei Y (1999) Effects of recombinant nitrophorin-2 nitric oxide complex on vascular smooth muscle. Biosci Biotechnol Biochem 63:1488–1490

    Article  PubMed  CAS  Google Scholar 

  • Kollien AH, Schaub GA (1998) Trypanosoma cruzi in the rectum of the bug Triatoma infestans: effects of blood ingestion by the starved vector. Am J Trop Med Hyg 59:166–170

    PubMed  CAS  Google Scholar 

  • Kollien AH, Schaub GA (2000) The development of Trypanosoma cruzi in Triatominae. Parasitol Today 16:381–387

    Article  PubMed  CAS  Google Scholar 

  • Kruszewicz AG, Grothmann P, Czujkowska A, Stadler A, Lawrenz A, Schaub GA (2009) Use of kissing bugs for blood sampling of exotic animals. Zycie Weteryn 84:405–407

    Google Scholar 

  • Langley PA, Pimley RW (1978) Rearing triatomines in the absence of a live host and some effects of diet on reproduction in Rhodnius prolixus Stål (Hemiptera: Reduviidae). Bull Entomol Res 68:243–251

    Article  Google Scholar 

  • Lapierre J, Lariviere M (1954) Réaction allergique aux piqûres de réduvidés (Rhodnius prolixus). Bull Soc Pathol Exot Filiales 47:563–566

    PubMed  CAS  Google Scholar 

  • Lavoipierre MMJ (1965) Feeding mechanism of blood-sucking arthropods. Nature 208:302–303

    Article  PubMed  CAS  Google Scholar 

  • Lavoipierre MMJ, Dickerson G, Gordon RM (1959) Studies on the methods of feeding of blood-sucking arthropods. Ann Trop Med Parasitol 53:235–250

    PubMed  CAS  Google Scholar 

  • Lehane MJ (2005) Managing the blood meal. In: Lehane MJ (ed) The biology of blood-sucking in insects, 2nd edn. Cambridge University Press, Cambridge, pp 84–115

    Chapter  Google Scholar 

  • Lent H, Wygodzinsky P (1979) Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas disease. Bull Am Museum Nat Hist 163:123–520

    Google Scholar 

  • Lorenzo Figueras AN, Kenigsten A, Lazzari CR (1994) Aggregation in the haematophagous bug Triatoma infestans: chemical signals and temporal pattern. J Insect Physiol 40:311–316

    Article  Google Scholar 

  • Maddrell SHP (1963) Excretion in the bloodsucking bug, Rhodnius prolixus Stål. I. The control of diuresis. J Exp Biol 40:247–256

    CAS  Google Scholar 

  • Maddrell SHP (1969) Secretion by the Malpighian tubules of Rhodnius. The movements of ions and water. J Exp Biol 51:71–97

    CAS  Google Scholar 

  • Maddrell SHP, Herman WS, Mooney RL, Overton JA (1991) 5-Hydroxytryptamine: a second diuretic hormone in Rhodnius prolixus. J Exp Biol 156:557–566

    PubMed  CAS  Google Scholar 

  • Marsden PD (1986) Dipetalogaster maxima or D. maximus as a xenodiagnostic agent. Rev Soc Bras Med Trop 19:205–207

    PubMed  CAS  Google Scholar 

  • Marsden PD, Cuba CC, Alvarenga NJ, Barreto AC (1979) Report on a field collection of Dipetalogaster maximus (Hemiptera, Triatominae) (Uhler, 1894). Rev Inst Med Trop São Paulo 21:202–206

    PubMed  CAS  Google Scholar 

  • Martí MA, González Lebrero MC, Roitberg AE, Estrin DA (2008) Bond or cage effect: how nitrophorins transport and release nitric oxide. J Am Chem Soc 130:1611–1618

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Ibarra JA, Novelo López M, Hernández Robles MR, Guillén YG (2003) Influence of the blood meal source on the biology of Meccus picturatus Usinger 1939 (Hemiptera: Reduviidae: Triatominae) under laboratory conditions. Mem Inst Oswaldo Cruz 98:227–232

    Article  PubMed  Google Scholar 

  • Meiser CK (2009) Bacteriolytic and anticoagulant proteins in the saliva and intestine of blood sucking bugs (Triatominae, Insecta). Dissertation, Ruhr-Universität Bochum

    Google Scholar 

  • Meiser CK, Schaub GA (2011) Xenodiagnosis. In: Mehlhorn H (ed) Nature helps – How plants and other organisms contribute to solve health problems. Springer, Heidelberg

    Google Scholar 

  • Meiser CK, Piechura H, Werner T, Dittmeyer-Schäfer S, Meyer HE, Warscheid B, Schaub GA, Balczun C (2010a) Kazal-type inhibitors in the stomach of Panstrongylus megistus (Triatominae, Reduviidae). Insect Biochem Mol Biol 40:345–353

    Article  PubMed  CAS  Google Scholar 

  • Meiser CK, Piechura H, Meyer HE, Warscheid B, Schaub GA, Balczun C (2010b) A salivary serine protease of the haematophagous reduviid Panstrongylus megistus: sequence characterization, expression pattern and characterization of proteolytic activity. Insect Mol Biol 19:409–421

    Article  PubMed  CAS  Google Scholar 

  • Morita A, Isawa H, Orito Y, Iwanaga S, Chinzei Y, Yuda M (2006) Identification and characterization of a collagen-induced platelet aggregation inhibitor, triplatin, from salivary glands of the assassin bug, Triatoma infestans. FEBS J 273:2955–2962

    Article  PubMed  CAS  Google Scholar 

  • Neghme A, Alfaro E, Beyes H, Schenone H (1967) Método para la crianza de laboratorio de Triatoma infestans (Klug, 1934) (Hemiptera, Reduviidae). Bol Chil Parasitol 22:107–112

    PubMed  CAS  Google Scholar 

  • Noeske-Jungblut C, Krätzschmar J, Haendler B, Alagon A, Possani L, Verhallen P, Donner P, Schleuning W-D (1994) An inhibitor of collagen-induced platelet aggregation from the saliva of Triatoma pallidipennis. J Biol Chem 269:5050–5053

    PubMed  CAS  Google Scholar 

  • Noeske-Jungblut C, Haendler B, Donner P, Alagon A, Possani L, Schleuning WD (1995) Triabin, a highly potent exosite inhibitor of thrombin. J Biol Chem 270:28629–28634

    Article  PubMed  CAS  Google Scholar 

  • Núñez JA (1987) Behavior of triatominae bugs. In: Brenner RR, Stoka A de la M (eds) Chagas’ disease vectors, vol. II Anatomy and physiological aspects. CRC Press, Boca Raton, pp 1–29

    Google Scholar 

  • Núñez JA, Segura EL (1987) Rearing of Triatominae. In: Brenner RR, Stoka A de la M (eds) Chagas’ disease vectors, vol. II Anatomy and physiological aspects. CRC, Boca Raton, pp 31–40

    Google Scholar 

  • Oliveira MF, Gandara AC, Braga CMS, Silva JR, Mury FB, Dansa-Petretski M, Menezes D, Vannier-Santos MA, Oliveira PL (2007) Heme crystallization in the midgut of triatomine insects. Comp Biochem Physiol C Toxicol Pharmacol 146:168–174

    Article  PubMed  CAS  Google Scholar 

  • Ortiz MI, Molina J (2010) Preliminary evidence of Rhodnius prolixus (Hemiptera: Triatominae) attraction to human skin odour extracts. Acta Trop 113:174–179. Erratum in Acta Trop (2010) 115:165

    Google Scholar 

  • Ribeiro JMC (1982) The antiserotonin and antihistamin activities of salivary secretion of Rhodnius prolixus. J Insect Physiol 28:69–75

    Article  CAS  Google Scholar 

  • Ribeiro JMC, Garcia ES (1981a) The role of the salivary glands in feeding in Rhodnius prolixus. J Exp Biol 94:219–230

    Google Scholar 

  • Ribeiro JM, Garcia ES (1981b) Platelet antiaggregating activity in the salivary secretion of the blood sucking bug Rhodnius prolixus. Experientia 37:384–386

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JMC, Pereira MEA (1984) Midgut glycosidases of Rhodnius prolixus. Insect Biochem 14:103–108

    Article  CAS  Google Scholar 

  • Ribeiro JMC, Walker FA (1994) High affinity histamine-binding and antihistaminic activity of the salivary nitric oxide-carrying heme protein (nitrophorin) of Rhodnius prolixus. J Exp Med 180:2251–2257

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JMC, Schneider M, Isaias T, Jurberg J, Galvão C, Guimarães JA (1998) Role of salivary antihemostatic components in blood feeding by triatomine bugs (Heteroptera). J Med Entomol 35:599–610

    PubMed  CAS  Google Scholar 

  • Ribeiro JMC, Andersen J, Silva-Neto MAC, Pham VM, Garfield MK, Valenzuela JG (2004) Exploring the sialome of the blood-sucking bug Rhodnius prolixus. Insect Biochem Mol Biol 34:61–79

    Article  PubMed  CAS  Google Scholar 

  • Ryckman RE, Bentley DG (1979) Host reactions to bug bites (Hemiptera, Homoptera): a literature review and annotated bibliography (parts I and II). CA Vector Views 26:1–49

    Google Scholar 

  • Ryckman RE, Ryckman AE (1963) Loma Linda University’s 1962 expedition to Baja California. Med Arts Sci 17:65–76

    PubMed  CAS  Google Scholar 

  • Ryckman RE, Ryckman AE (1966) Reduviid bugs. In: Smith CN (ed) Insect colonization and mass production. Academic, New York, pp 183–200

    Google Scholar 

  • Ryckman RE, Ryckman AE (1967) Epizootiology of Trypanosoma cruzi in Southwestern North America. Part X: The biosystematics of Dipetalogaster maximus in Mexico (Hemiptera: Reduvidae) (Kinetoplastida: Trypanosomidae). J Med Entomol 4:180–188

    PubMed  CAS  Google Scholar 

  • Sant'Anna MRV, Diotaiuti L, de Figueiredo GA, de Figueiredo GN, Pereira MH (2001) Feeding behaviour of morphologically similar Rhodnius species: influence of mechanical characteristics and salivary function. J Insect Physiol 47:1459–1465

    Article  PubMed  Google Scholar 

  • Santos A, Ribeiro JMC, Lehane MJ, Gontijo NF, Veloso AB, Sant'Anna MRV, Araujo RN, Grisard EC, Pereira MH (2007) The sialotranscriptome of the bood-sucking bug Triatoma brasiliensis (Hemiptera, Triatominae). Insect Biochem Mol Biol 37:702–712

    Article  PubMed  CAS  Google Scholar 

  • Sarkis JJF, Guimarães JA, Ribeiro JMC (1986) Salivary apyrase of Rhodnius prolixus. Kinetics and purification. Biochem J 233:885–891

    PubMed  CAS  Google Scholar 

  • Schaal KP (1992) Pathogene aerobe Aktinomyceten. In: Burkhardt F (ed) Mikrobiologische Diagnostik. Thieme, Stuttgart, pp 258–268

    Google Scholar 

  • Schaub GA (1988) Developmental time and mortality in larvae of the reduviid bugs Triatoma infestans and Rhodnius prolixus after coprophagic infection with Blastocrithidia triatomae (Trypanosomatidae). J Invertebr Pathol 51:23–31

    Article  PubMed  CAS  Google Scholar 

  • Schaub GA (1989) Trypanosoma cruzi: quantitative studies of development of two strains in small intestine and rectum of the vector Triatoma infestans. Exp Parasitol 68:260–273

    Article  PubMed  CAS  Google Scholar 

  • Schaub GA (1990a) Membrane feeding for infection of the reduviid bug Triatoma infestans with Blastocrithidia triatomae (Trypanosomatidae) and pathological effects of the flagellate. Parasitol Res 76:306–310

    Article  PubMed  CAS  Google Scholar 

  • Schaub GA (1990b) The effect of Blastocrithidia triatomae (Trypanosomatidae) on the reduviid bug Triatoma infestans: influence of group size. J Invertebr Pathol 56:249–257

    Article  PubMed  CAS  Google Scholar 

  • Schaub GA (2008) Kissing bugs. In: Mehlhorn H (ed) Encyclopedia of parasitology, vol 1, 3rd edn. Springer, Heidelberg, pp 684–686

    Google Scholar 

  • Schaub GA (2009) Interactions of trypanosomatids and triatomines. Adv Insect Physiol 37:177–242

    Article  Google Scholar 

  • Schaub GA, Breger B (1988) Pathological effects of Blastocrithidia triatomae (Trypanosomatidae) on the reduviid bugs Triatoma sordida, T. pallidipennis and Dipetalogaster maxima after coprophagic infection. Med Vet Entomol 2:309–318

    Article  PubMed  CAS  Google Scholar 

  • Schaub GA, Lösch P (1989) Parasite/host-interrelationships of the trypanosomatids Trypanosoma cruzi and Blastocrithidia triatomae and the reduviid bug Triatoma infestans: influence of starvation of the bug. Ann Trop Med Parasitol 83:215–223

    PubMed  CAS  Google Scholar 

  • Schaub GA, Böker CA, Jensen C, Reduth D (1989) Cannibalism and coprophagy are modes of transmission of Blastocrithidia triatomae (Trypanosomatidae) between triatomines. J Protozool 36:171–175

    PubMed  CAS  Google Scholar 

  • Schaub GA, Meiser CK, Balczun C (2011) Interactions of Trypanosoma cruzi and triatomines. In: Mehlhorn H (ed) Progress in the fight against parasitic diseases. Springer, Heidelberg

    Google Scholar 

  • Schmitz H, Trenner S, Hofmann MH, Bleckmann H (2000) The ability of Rhodnius prolixus (Hemiptera; Reduviidae) to approach a thermal source solely by its infrared radiation. J Insect Physiol 46:745–751

    Article  PubMed  CAS  Google Scholar 

  • Schnitker A, Schaub GA, Maddrell SHP (1988) The influence of Blastocrithidia triatomae (Trypanosomatidae) on the reduviid bug Triatoma infestans: in vivo and in vitro diuresis and production of diuretic hormone. Parasitology 96:9–17

    Article  PubMed  CAS  Google Scholar 

  • Schofield CJ (1979) The behaviour of Triatominae (Hemiptera: Reduviidae): a review. Bull Entomol Res 69:363–379

    Article  Google Scholar 

  • Schofield CJ, Galvão C (2009) Classification, evolution and species groups within the Triatominae. Acta Trop 110:88–100

    Article  PubMed  CAS  Google Scholar 

  • Schofield CJ, Jannin J, Salvatella R (2006) The future of Chagas disease control. Trends Parasitol 22:583–588

    Article  PubMed  Google Scholar 

  • Schwarz A, Sternberg JM, Johnston V, Medrano-Mercado N, Anderson JM, Hume JCC, Valenzuela JG, Schaub GA, Billingsley PF (2009) Antibody responses of domestic animals to salivary antigens of Triatoma infestans as biomarkers for low-level infestation of triatomines. Int J Parasitol 39:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Soares RPP, das Graças Evangelista L, Laranja LS, Diotaiuti L (2000) Population dynamics and feeding behavior of Triatoma brasiliensis and Triatoma pseudomaculata, main vectors of Chagas disease in Northeastern Brazil. Mem Inst Oswaldo Cruz 95:151–155

    Google Scholar 

  • Soares AC, Carvalho-Tavares J, Gontijo NF, dos Santos VC, Teixeira MM, Pereira MH (2006) Salivation pattern of Rhodnius prolixus (Reduviidae; Triatominae) in mouse skin. J Insect Physiol 52:468–472

    Article  PubMed  CAS  Google Scholar 

  • Stadler A (2006) Einfluss des Geschlechtes und psychoneuroimmunologischer Faktoren auf die Parasitierung von Zootieren. Diploma thesis, Ruhr-Universität Bochum

    Google Scholar 

  • Stadler A (2007) Non invasive use of Dipetalogaster maxima for obtaining a blood sample from zoo animals. Proc Br Vet Zool Soc, Abstracts:96–97

    Google Scholar 

  • Stadler A, Lawrenz A, Schaub GA (2007) Der Einsatz von Raubwanzen zur Gewinnung von Blutproben bei Zootieren. Zeitschr Kölner Zoo 50:163–173

    Google Scholar 

  • Stadler A, Lawrenz A, Schaub GA (2008a) A minimaly-invasive technique for blood sampling suitable for TB screening – preliminary results. Proc Eur Zoo Wildl Vet Abst:143

    Google Scholar 

  • Stadler A, Lawrenz A, Schaub GA (2008b) Nicht-invasiver Einsatz von Raubwanzen zur Gewinnung von Blutproben bei Zootieren. 26. Arbeitstagung der Zootierärzte, Frankfurt Tagungsbericht Abst:110–112

    Google Scholar 

  • Stadler A, Lawrenz A, Schaub GA (2009) Der Einsatz der südamerikanischen Raubwanze Dipetalogaster maxima in Zoologischen Gärten zur Gewinnung von Blutproben. Tierärztliche Umschau 64:147–153

    Google Scholar 

  • Thomsen R, Voigt CC (2006) Non invasive blood sampling from primates using laboratory-bred blood-sucking bugs (Dipetalogaster maximus; Reduviidae, Heteroptera). Primates 47:397–400

    Article  PubMed  Google Scholar 

  • Thomsen R, Voigt CC (2008) Patent Application Publication: US 2008/0221536 A1 Device for carrying out the minimally invasive withdrawal of blood from animals by using blood-sucking assassin bugs. United States of America Patent Office

    Google Scholar 

  • Vallejo GA, Guhl F, Schaub GA (2009) Triatominae – Trypanosoma cruzi/T. rangeli: vector-parasite interactions. Acta Trop 110:137–147

    Article  PubMed  CAS  Google Scholar 

  • Vargas A (2008) Diagnósticos de gestacion. Bol Programa de conservacion ex-situ del lince ibérico 48:1–2

    Google Scholar 

  • Voigt CC, von Helversen O, Michener RH, Kunz TH (2003) Validation of a non invasive blood sampling technique for doubly-labelled water experiments. J Exp Zool A Comp Exp Biol 296:87–97

    Article  PubMed  Google Scholar 

  • Voigt CC, Fassbender M, Denhard M, Wibbelt G, Jewegenow K, Hofer H, Schaub GA (2004) Validation on a minimally invasive blood-sampling technique for the analysis of hormones in domestic rabbits, Oryctolagus cuniculus (Lagomorpha). Gen Comp Endocrinol 135:100–107

    Article  PubMed  CAS  Google Scholar 

  • Voigt CC, Michener R, Wibbelt G, Kunz TH, von Helversen O (2005) Blood-sucking bugs as a gentle method for blood collection in water budget studies using doubly labelled water. Comp Biochem Phys 142:318–324

    Article  CAS  Google Scholar 

  • Voigt CC, Peschel U, Wibbelt G, Frölich K (2006) An alternative, less invasive blood sample collection technique for serologic studies utilizing triatomine bugs (Heteroptera; Insecta). J Wildl Dis 42:466–469

    PubMed  Google Scholar 

  • von Helversen O, Reyer HU (1984) Nectar intake and energy expenditure in a flower visiting bat. Oecologia 63:178–184

    Article  Google Scholar 

  • von Helversen O, Volleth M, Núnez J (1986) A new method for obtaining blood from a small mammal without injuring the animal: use of triatomid bugs. Experientia 42:809–810

    Article  Google Scholar 

  • Vos AC, Müller T, Neubert L, Voigt CC (2010) Validation of less invasive blood technique in rabies serology using reduviid bugs (Triatominae, Heminoptera). J Zoo Wildl Med 41:63–68

    Article  PubMed  Google Scholar 

  • Wenk P, Lucic S, Betz O (2010) Functional anatomy of the hypopharynx and the salivary pump in the feeding apparatus of the assassin bug Rhodnius prolixus (Reduviidae, Heteroptera). Zoomorphology 129:225–234

    Article  Google Scholar 

  • Weichsel A, Andersen JF, Roberts SA, Montford WR (2000) Nitric oxid binding to nitrophorin 4 induces complete distal pocket burial. Nat Struct Biol 7:551–554

    Article  PubMed  CAS  Google Scholar 

  • Wigglesworth VB (1931) The physiology of excretion in a blood-sucking insect, Rhodnius prolixus (Hemiptera, Reduviidae) I. Composition of the urine. J Exp Biol 8:411–427

    CAS  Google Scholar 

  • Wigglesworth VB (1972) The principles of insect physiology, 7th edn. Chapman and Hall, London

    Google Scholar 

  • Will R (1971) Serologische Normalwerte und deren krankhafte Veränderungen bei Reptilien (Squamata). Diploma thesis, Universität Hohenheim

    Google Scholar 

  • Will R (1975) Die Verschiebungen des BluteiweiÔbildes (Dysproteinämien) bei Lebererkrankungen von Reptilien (Boidae, Pythonidae, Varanidae). Zbl Vet Med B 22:635–655

    Google Scholar 

  • Will R (1977) Hämatologische und serologische Untersuchungen bei Lacertiden (Reptila, Squamata). Dissertation, Universität Hohenheim

    Google Scholar 

  • Wirtz HP (1987) Eindringen der Mundwerkzeuge von Raubwanzen durch eine Membran (Hemiptera: Reduviidae). Entomol Gen 12:147–153

    Google Scholar 

  • Wood SF (1964) The laboratory culture of Triatoma (Hem., Reduviidae). Bull World Health Org 31:579–581

    PubMed  CAS  Google Scholar 

  • Zeledón R, Rabinovich JE (1981) Chagas’ disease: an ecological appraisal with special emphasis on its insect vectors. Annu Rev Entomol 26:101–133

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. R. Cassada for correcting the English style. We are deeply indebted to Dr. Ulrich Schürer and Dr. Arne Lawrenz from the Zoological Garden Wuppertal for permission and support of the studies. We also thank them, Andreas Fischer and Stephan Gatzen for the permission to use their photos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter A. Schaub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stadler, A., Meiser, C.K., Schaub, G.A. (2011). “Living Syringes”: Use of Hematophagous Bugs as Blood Samplers from Small and Wild Animals. In: Mehlhorn, H. (eds) Nature Helps.... Parasitology Research Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19382-8_11

Download citation

Publish with us

Policies and ethics