Skip to main content

Error Propagation and Distortion Modeling in Loss-Affected Predictive Video Coding

  • Chapter
Multimedia Analysis, Processing and Communications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 346))

Summary

The highly complex prediction dependency structure employed in current video coding algorithms makes the resulting compressed bitstreams highly susceptible to data loss or corruption. Caused by transmission over imperfect communication channels or faulty storage devices these errors propagate then into other segments of the video bitstream thereby causing wild variations in quality of the reconstructed content. This chapter reviews the state-of-the-art in modeling the above error propagation phenomenon in predictive video coding and the resulting increase in video distortion across the affected media presentation. We focus in greater detail on the most important recent advances in packet-based distortion estimation techniques and examine some of the most interesting related discoveries.We show that video distortion is not only affected by the amount of data lost but also by the spatio-temporal distribution of the affected data segments. Furthermore, we illustrate cases where contrary to common belief subsequent packet loss actually leads to a reduction in video distortion and where surprisingly increased burstiness of the loss process again contributes to a smaller drop in video quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Telecom. Standardization Sector of ITU, Video coding for low bitrate communication. ITU-T Recommendation H.261 (1990)

    Google Scholar 

  2. ISO/IEC, Information technology — generic coding of moving pictures and associated audio information: Video (MPEG-2) International Standard 13818-2:2000 (1996)

    Google Scholar 

  3. Telecom. Standardization Sector of ITU, Video coding for low bitrate communication ITU-T Recommendation H.263 (March 1996)

    Google Scholar 

  4. Telecom. Video coding for low bitrate communication, ITU-TRecommendation H.263 Version 2 (February 1998)

    Google Scholar 

  5. ISO/IEC, Information technology — coding of audio-visual objects part 2: Visual (MPEG-4), JTC1/SC29/WG11 N4350, International Standard 14496-2 (July 2001)

    Google Scholar 

  6. Telecom. Standardization Sector of ITU, Video coding for low bitrate communication, Draft ITU-T Recommendation H.264 (March 2003)

    Google Scholar 

  7. ITU-T and ISO/IEC JTC 1, Advanced video coding for generic audiovisual services, amendment 3: Scalable video coding, Draft ITU-T Recommendation H.264 - ISO/IEC 14496-10(AVC) (April 2005)

    Google Scholar 

  8. Kell, R.D.: Improvements relating to electric picture transmission systems. UK Patent Specification No. 341,811

    Google Scholar 

  9. Mitchell, J.L., Pennebaker, W.B., Fogg, C.F., LeGall, D.J.: MPEG Video Compression Standard. Chapman and Hall, Boca Raton (1997)

    Google Scholar 

  10. Haskell, B.G., Puri, A.: Digital Video: An Introduction to MPEG-2. Chapman & Hall, New York (1997)

    Google Scholar 

  11. Wiegand, T., Girod, B.: Multi Frame Motion-Compensated Prediction for Video Transmission. Springer, Heidelberg (2001)

    Google Scholar 

  12. Approaching the zettabyte era. Cisco Visual Networking Index. Cisco Inc. (June 2008)

    Google Scholar 

  13. Albanese, A., Blömer, J., Edmonds, J., Luby, M., Sudan, M.: Priority encoding transmission. IEEE Trans. Information Theory 42, 1737–1744 (1996)

    Article  MATH  Google Scholar 

  14. Budagavi, M., Gibson, J.D.: Multiframe video coding for improved performance over wireless channels. IEEE Trans. Image Processing 10(2), 252–265 (2001)

    Article  MATH  Google Scholar 

  15. Chakareski, J., Chou, P., Aazhang, B.: Computing rate-distortion optimized policies for streaming media to wireless clients. In: Proc. Data Compression Conference, pp. 53–62. IEEE Computer Society, Snowbird (2002)

    Google Scholar 

  16. Chou, P.A., Miao, Z.: Rate-distortion optimized streaming of packetized media. IEEE Trans. Multimedia 8(2), 390–404 (2006)

    Article  Google Scholar 

  17. Apostolopoulos, J.: Reliable video communication over lossy packet networks using multiple state encoding and path diversity. In: Proc. Conf. on Visual Communications and Image Processing, vol. 4310, pp. 392–409. SPIE, San Jose (2001)

    Google Scholar 

  18. Stuhlmüller, K., Färber, N., Link, M., Girod, B.: Analysis of video transmission over lossy channels. IEEE J. Selected Areas in Communications 18(6), 1012–1032 (2000)

    Article  Google Scholar 

  19. Kim, I.-M., Kim, H.-M.: A new resource allocation scheme based on a PSNR criterion for wireless video transmission to stationary receivers over gaussian channels. IEEE Trans. Wireless Communications 1(3), 393–401 (2002)

    Article  Google Scholar 

  20. Liang, Y., Apostolopoulos, J., Girod, B.: Analysis of packet loss for compressed video: Does burst-length matter. In: Proc. Int’l Conf. Acoustics, Speech, and Signal Processing, vol. 5, pp. 684–687. IEEE, Hong Kong (2003)

    Google Scholar 

  21. Chakareski, J., Apostolopoulos, J., Tan, W.-T., Wee, S., Girod, B.: Distortion chains for predicting the video distortion for general packet loss patterns. In: Proc. Int’l Conf. Acoustics, Speech, and Signal Processing, vol. 5, pp. 1001–1004. IEEE, Montreal (2004)

    Google Scholar 

  22. Li, Z., Chakareski, J., Niu, X., Xiao, G., Zhang, Y., Gu, W.: Modeling and analysis of distortion caused by Markov-model burst packet losses in video transmission. IEEE Trans. Circuits and Systems for Video Technology (August 2008) (to appear)

    Google Scholar 

  23. Liang, Y., Apostolopoulos, J., Girod, B.: Analysis of packet loss for compressed video: Does burst-length matter. IEEE Trans. Circuits and Systems for Video Technology 18(7), 861–874 (2008)

    Article  Google Scholar 

  24. Chakareski, J., Apostolopoulos, J., Wee, S., Tan, W.-T., Girod, B.: Rate-distortion hint tracks for adaptive video streaming. IEEE Trans. Circuits and Systems for Video Technology 15(10), 1257–1269 (2005); special issue on Analysis and Understanding for Video Adaptation

    Article  Google Scholar 

  25. Gilbert, E.N.: Capacity of a burst-noise channel. Bell Syst. Tech. Journal 39, 1253–1266 (1960)

    Google Scholar 

  26. He, Z.H., Cai, J.F., Chen, C.W.: Joint source channel rate-distortion analysis for adaptive mode selection and rate control in wireless video coding. IEEE Trans. Circuits and Systems for Video Technology 12(6), 511–523 (2002)

    Article  Google Scholar 

  27. Wang, Y., Wu, Z., Boyce, J.M.: Modeling of transmission-loss-induced distortion in decoded video. IEEE Trans. Circuits and Systems for Video Technology 16(6), 716–732 (2006)

    Article  Google Scholar 

  28. Girod, B., Färber, N.: Feedback-based error control for mobile video transmission. Proceedings of the IEEE 87(10), 1707–1723 (1999)

    Article  Google Scholar 

  29. H.264/AVC Reference Software JM12.2, http://iphome.hhi.de/suehring/tml/download/old_jm/jm12.2.zip

  30. He, Z.H., Xiong, H.K.: Transmission distortion analysis for real-time video encoding and streaming over wireless networks. IEEE Trans. Circuits and Systems for Video Technology 16(9), 1051–1062 (2006)

    Article  Google Scholar 

  31. Zhang, R., Regunathan, S.L., Rose, K.: Video coding with optimal inter/intra-mode switching for packet loss resilience. IEEE J. Selected Areas in Communications 18(6), 966–976 (2000)

    Article  Google Scholar 

  32. Reibman, A.: Optimizing multiple description video coders in a packet loss environment. In: Proc. Int’l Packet Video Workshop, Pittsburgh, USA (April 2002)

    Google Scholar 

  33. Yang, H., Rose, K.: Recursive end-to-end distortion estimation with model-based cross-correlation approximation. In: Proc. Int’l Conf. Image Processing, vol. 3, pp. 469–472. IEEE, Barcelona (2003)

    Google Scholar 

  34. Heng, B.A., Apostolopoulos, J.G., Lim, J.S.: End-to-end rate-distortion optimized mode selection for multiple description video coding. In: Proc. Int’l Conf. Acoustics, Speech, and Signal Processing, vol. 5, pp. 905–908. IEEE, Philadelphia (2005)

    Google Scholar 

  35. Yang, H., Rose, K.: Advances in recursive per-pixel end-to-end distortion estimation for robust video coding in H.264/AVC. IEEE Trans. Circuits and Systems for Video Technology 17(7), 845–856 (2007)

    Article  Google Scholar 

  36. Côté, G., Shirani, S., Kossentini, F.: Optimal mode selection and synchronization for robust video communications over error-prone networks. IEEE J. Selected Areas in Communications 18(6), 952–965 (2000)

    Article  Google Scholar 

  37. Ekmekci, S., Sikora, T.: Recursive decoder distortion estimation based on AR(1) source modeling for video. In: Proc. Int’l Conf. Image Processing, vol. 1, pp. 187–190. IEEE, Singapore (2004)

    Google Scholar 

  38. Färber, N., Stuhlmüller, K., Girod, B.: Analysis of error propagation in hybrid video coding with application to error resilience. In: Proc. Int’l Conf. Image Processing, vol. 2, pp. 550–554. IEEE, Kobe (1999)

    Google Scholar 

  39. Zhang, C., Yang, H., Yu, S., Yang, X.: Gop-level transmission distortion modeling for mobile streaming video. Signal Processing: Image Communication 23(2), 116–126 (2008)

    Article  Google Scholar 

  40. Ivrlač, M.T., Choi, L.U., Steinbach, E., Nossek, J.A.: Models and analysis of streaming video transmission over wireless fading channels. Signal Processing: Image Communication (June 2009)

    Google Scholar 

  41. Reibman, A., Vaishampayan, V.: Quality monitoring for compressed video subjected to packet loss. In: Proc. Int’l Conf. Multimedia and Exhibition, vol. 1, pp. 17–20. IEEE, Baltimore (2003)

    Google Scholar 

  42. Liu, T., Wang, Y., Boyce, J.M., Yang, H., Wu, Z.: A novel video quality metric for low bit-rate video considering both coding and packet-loss artifacts. IEEE J. Selected Areas in Communications 3(2), 280–293 (2009)

    Google Scholar 

  43. Chakareski, J., Girod, B.: Rate-distortion optimized packet scheduling and routing for media streaming with path diversity. In: Proc. Data Compression Conference, pp. 203–212. IEEE Computer Society, UT (2003)

    Google Scholar 

  44. Cheung, G., Tan, W.-T.: Directed acyclic graph based source modeling for data unit selection of streaming media over qos networks. In: Proc. Int’l Conf. Multimedia and Exhibition, vol. 2, pp. 81–84. IEEE, Lausanne (2002)

    Google Scholar 

  45. Tu, W., Chakareski, J., Steinbach, E.: Rate-distortion optimized frame dropping for multi-user streaming and conversational video. Hindawi Journal on Advances in Multimedia (2) (January 2008); special issue on Collaboration and Optimization for Multimedia Communications

    Google Scholar 

  46. Tao, S., Apostolopoulos, J., Guérin, R.: Real-time monitoring of video quality in IP networks. IEEE/ACM Trans. Networking 16(5), 1052–1065 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chakareski, J. (2011). Error Propagation and Distortion Modeling in Loss-Affected Predictive Video Coding. In: Lin, W., Tao, D., Kacprzyk, J., Li, Z., Izquierdo, E., Wang, H. (eds) Multimedia Analysis, Processing and Communications. Studies in Computational Intelligence, vol 346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19551-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19551-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19550-1

  • Online ISBN: 978-3-642-19551-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics