Skip to main content
  • 7587 Accesses

Zusammenfassung

Das Monoamin Serotonin (5-Hydroxytryptamin, 5-HT) wird in Neuronen des Hirnstamms synthetisiert. Es ist an der zentralnervösen Regulation einer großen Zahl physiologischer Prozesse beteiligt und beeinflusst während der Entwicklung des Gehirns die Ausprägung der Morphologie von Neuronen. Der Neurotransmitter scheint für eine normale Entwicklung des gesamten Organismus essenziell zu sein, denn transgene Mäuse, die aufgrund des Fehlens eines Transkriptionsfaktors kein Serotonin produzieren können, leiden unter Atemstörungen und weisen eine hohe Mortalität auf (Hodges et al. 2009). Zahlreiche Verhaltensuntersuchungen im Tiermodell lieferten Hinweise, dass 5-HT an der Kontrolle von emotionalen Prozessen beteiligt ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abumaria N, Ribic A, Anacker C et al (2008) Stress upregulates TPH1 but not TPH2 mRNA in the rat dorsal raphe nucleus: identification of two TPH2 mRNA splice variants. Cell Mol Neurobiol 28: 331–342

    Article  CAS  PubMed  Google Scholar 

  • Auer DP, Putz B, Kraft E et al (2000) Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry 47: 305–313

    Article  CAS  PubMed  Google Scholar 

  • Barton DA, Esler MD, Dawood T et al (2008) Elevated brain serotonin turnover in patients with depression: effect of genotype and therapy. Arch Gen Psychiatry 65: 38–46

    Article  CAS  PubMed  Google Scholar 

  • Bear MF, Connors BW, Paradiso MA (2009) Neurowissenschaften. Ein grundlegendes Lehrbuch für Biologie, Medizin und Psychologie. 3. Aufl. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Berton O, McClung CA, Dileone RJ et al (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311: 864–868

    Article  CAS  PubMed  Google Scholar 

  • Bielau H, Steiner J, Mawrin C et al (2007) Dysregulation of GABAergic neurotransmission in mood disorders: a postmortem study. Ann NY Acad Sci 1096: 157–169

    Article  CAS  PubMed  Google Scholar 

  • Buckholtz JW, Meyer-Lindenberg A (2008) MAOA and the neurogenetic architecture of human aggression. Trends Neurosci 31: 120–129

    Article  CAS  PubMed  Google Scholar 

  • Carboni E, Spielewoy C, Vacca C et al (2001) Cocaine and amphetamine increase extracellular dopamine in the nucleus accumbens of mice lacking the dopamine transporter gene. J Neurosci 21: RC141: 1–4

    PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301: 386–389

    Article  CAS  PubMed  Google Scholar 

  • Castren E, Rentamaki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70: 289–297

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Lipska BK, Halim N et al (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75: 807–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Lipska BK, Weinberger DR (2006) Genetic mouse models of schizophrenia: from hypothesis-based to susceptibility gene-based models. Biol Psychiatry 59: 1180–1188

    Article  CAS  PubMed  Google Scholar 

  • Coupland NJ, Wilson SJ, Nutt DJ (1996) α2-Adrenoceptors in panic and anxiety disorders. J Psychopharmacol 10: 26–34

    CAS  Google Scholar 

  • Czeh B, Simon M, Van Der Hart MG et al (2005) Chronic stress decreases the number of parvalbumin-immunoreactive interneurons in the hippocampus: prevention by treatment with a substance P receptor (NK1) antagonist. Neuropsychopharmacology 30: 67–79

    Article  CAS  PubMed  Google Scholar 

  • Dlugos A, Freitag C, Hohoff C et al (2007) Norepinephrine transporter gene variation modulates acute response to D-amphetamine. Biol Psychiatry 61: 1296–1305

    Article  CAS  PubMed  Google Scholar 

  • Drevets WC, Frank E, Price JC et al (1999) PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 46: 1375–1387

    Article  CAS  PubMed  Google Scholar 

  • Flügge G, van Kampen M, Meyer H, Fuchs E (2003) α2A and α2C-adrenoceptor regulation in the brain: α2A changes persist after chronic stress. Eur J Neurosci 17: 917–928

    Article  PubMed  Google Scholar 

  • Frodl T, Reinhold E, Koutsouleris N et al (2010) Childhood stress, serotonin transporter gene and brain structures in major depression. Neuropsychopharmacology 35: 1383–1390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Froehlich TE, McGough JJ, Stein MA (2010) Progress and promise of attention-deficit hyperactivity disorder pharmacogenetics. CNS Drugs 24: 99–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gainetdinov RR, Caron MG (2003) Monoamine transporters: from genes to behavior. Annu Rev Pharmacol Toxicol 43: 261–284

    Article  CAS  PubMed  Google Scholar 

  • Grohmann M, Hammer P, Walther M et al (2010) Alternative splicing and extensive RNA editing of human TPH2 transcripts. PLoS One 5: e8956

    Article  PubMed Central  PubMed  Google Scholar 

  • Heal DJ, Cheetham SC, Smith SL (2009) The neuropharmacology of ADHD drugs in vivo: insights on efficacy and safety. Neuropharmacology 57: 608–718

    Article  CAS  PubMed  Google Scholar 

  • Heinz A, Braus DF, Smolka MN et al (2005) Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nat Neurosci 8: 20–21

    Article  CAS  PubMed  Google Scholar 

  • Henkel V, Baghai TC, Eser D et al (2004) The gamma amino butyric acid (GABA) receptor α-3 subunit gene polymorphism in unipolar depressive disorder: a genetic association study. Am J Med Genet B Neuropsychiatr Genet 126B: 82–87

    Article  PubMed  Google Scholar 

  • Hesse S, Ballaschke O, Barthel H, Sabri O (2009) Dopamine transporter imaging in adult patients with attention-deficit/hyperactivity disorder. Psychiatry Res 171: 120–128

    Article  CAS  PubMed  Google Scholar 

  • Hodges MR, Wehner M, Aungst J et al (2009) Transgenic mice lacking serotonin neurons have severe apnea and high mortality during development. J Neurosci 29: 10341–10349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holmes A, Lachowicz JE, Sibley DR (2004) Phenotypic analysis of dopamine receptor knockout mice; recent insights into the functional specificity of dopamine receptor subtypes. Neuropharmacology 47: 1117–1134

    Article  CAS  PubMed  Google Scholar 

  • Holsboer F (1999) Molekulare Mechanismen der Depressionstherapie. In: Ganten G, Ruckpaul K (Hrsg) Handbuch der molekularen Medizin. Springer, Berlin Heidelberg New York, S 273–318

    Google Scholar 

  • Hu W, Zhang M, Czeh B et al (2010) Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology 35: 1693–1707

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iversen SD, Iversen LL (2007) Dopamine: 50 years in perspective. Trends Neurosci 30: 188–193

    Article  CAS  PubMed  Google Scholar 

  • Kasper S, Hamon M (2009) Beyond the monoaminergic hypothesis: agomelatine, a new antidepressant with an innovative mechanism of action. World J Biol Psychiatry 10: 117–126

    Article  PubMed  Google Scholar 

  • Kato M, Serretti A (2010) Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 15: 473–500

    Article  CAS  PubMed  Google Scholar 

  • Kornhuber J, Wiltfang J, Bleich S (2004) The etiopathogenesis of schizophrenias. Pharmacopsychiatry 37(Suppl 2): S103–112

    Article  PubMed  Google Scholar 

  • Krämer UM, Cunillera T, Camara E et al (2007) The impact of catechol-Omethyltransferase and dopamine D4 receptor genotypes on neurophysiological markers of performance monitoring. J Neurosci 27: 14190–14198

    Article  PubMed  Google Scholar 

  • Lesch KP, Bengel D, Heils A et al (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274: 1527–1531

    Article  CAS  PubMed  Google Scholar 

  • Luscher B, Shen Q, Sahir N (2010) The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 16(4): 383–406

    Article  PubMed Central  PubMed  Google Scholar 

  • Maciag D, Hughes J, O’Dwyer G et al (2010) Reduced density of calbindin immunoreactive GABAergic neurons in the occipital cortex in major depression: relevance to neuroimaging studies. Biol Psychiatry 67: 465–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Picciotto MR (1999) Knock-out mouse models used to study neurobiological systems. Crit Rev Neurobiol 13: 103–149

    CAS  PubMed  Google Scholar 

  • Price RB, Shungu DC, Mao X et al (2009) Amino acid neurotransmitters assessed by proton magnetic resonance spectroscopy: relationship to treatment resistance in major depressive disorder. Biol Psychiatry 65: 792–800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Risch N, Herrell R, Lehner T et al (2009) Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA 301: 2462–2471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robertson SD, Matthies HJ, Galli A (2009) A closer look at amphetamine-induced reverse transport and trafficking of the dopamine and norepinephrine transporters. Mol Neurobiol 39: 73–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rudolph U, Möhler H (2006) GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol 6: 18–23

    Article  CAS  PubMed  Google Scholar 

  • Tadic A, Rujescu D, Szegedi A et al (2003) Association of a MAOA gene variant with generalized anxiety disorder, but not with panic disorder or major depression. Am J Med Genet B Neuropsychiatr Genet 117B: 1–6

    Article  CAS  PubMed  Google Scholar 

  • Thompson M, Weickert CS, Wyatt E, Webster MJ (2009) Decreased glutamic acid decarboxylase(67) mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders. J Psychiatr Res 43: 970–977

    Article  PubMed  Google Scholar 

  • Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4: 13–25

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Newcorn J et al (2007) Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 64: 932–940

    Article  CAS  PubMed  Google Scholar 

  • Walther DJ, Peter JU, Bashammakh S et al (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299: 76

    Article  CAS  PubMed  Google Scholar 

  • Zaboli G, Jonsson EG, Gizatullin R et al (2006) Tryptophan hydroxylase-1 gene variants associated with schizophrenia. Biol Psychiatry 60: 563–569

    Article  CAS  PubMed  Google Scholar 

  • Zetzsche T, Preuss UW, Bondy B et al (2008) 5-HT1A receptor gene C-1019 G polymorphism and amygdala volume in borderline personality disorder. Genes Brain Behav 7: 306–313

    Article  CAS  PubMed  Google Scholar 

  • Zill P, Baghai TC, Zwanzger P et al (2004) SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression. Mol Psychiatry 9: 1030–1036

    Article  CAS  PubMed  Google Scholar 

  • Zill P, Buttner A, Eisenmenger W et al (2007) Analysis of tryptophan hydroxylase I and II mRNA expression in the human brain: a post-mortem study. J Psychiatr Res 41: 168–173

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flügge, G. (2012). Neurotransmitterhypothesen. In: Gründer, G., Benkert, O. (eds) Handbuch der psychiatrischen Pharmakotherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19844-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19844-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19843-4

  • Online ISBN: 978-3-642-19844-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics