Skip to main content

Future Research in Adipose Stem Cell Engineering

  • Chapter
  • First Online:
Adipose Stem Cells and Regenerative Medicine

Abstract

Adipose stem cells have a bright prospect in regenerative medicine for tissue/organ engineering. However, some hurdles may hinder the progress of adipose stem cell engineering. Therefore this chapter highlights the advances in adipose stem cell researches, and focuses on prospective researches that are needed to overcome the hurdles in adipose stem cell engineering, i.e., to identify the various stem cells that can be isolated from adipose tissue, characterize the potentials of the various stem cells, and the underlying mechanism/pathways that are involved these potentials, to get various formulas for effective and efficient isolation, expansion and differentiation method, to develop new biomaterials and methods in tissue/organ engineering, and finally issues to be considered in designing future studies for safe, and effective animal studies and clinical trials in adipose stem cell engineering

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amado LC, Saliaris AP, Schuleri KH et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102:11474–11479

    Article  PubMed  CAS  Google Scholar 

  2. Arikawa E, Sun Y, Wang J et al (2008) Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC) study. BMC Genomics 9:328, (12 pages) http://www.biomedcentral.com/1471-2164/9/328

    Article  PubMed  Google Scholar 

  3. Astori G, Vignati F, Bardelli S et al (2007) In vitro and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J Transl Med 5:55, (10 pages) Available from: http://www.translational-medicine.com/content/5/1/55

    Article  PubMed  Google Scholar 

  4. Atala A, Bauer SB, Soker S et al (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246

    Article  PubMed  Google Scholar 

  5. Balakrishnan B, Jayakrishnan A (2005) Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 26:3941–3951

    Article  PubMed  CAS  Google Scholar 

  6. Barrenechea EA, Lucero FQ (2008) Safety and efficacy of autologous adipose-derived stem cell transplantation in patients with type 1 diabetes. http://clinicaltrials.gov/ct2/show/NCT00703599?term=adipose+tissue+and+stem+cell+and+clinical+trial&rank=8. Accessed 21 Sep 2010

  7. Barrenechea EA, Lucero FQ (2008) Safety and efficacy of autologous adipose-derived stem cell transplantation in type 2 diabetics. http://clinicaltrials.gov/ct2/show/NCT00703612?term=adipose+tissue+and+stem+cell+and+clinical+trial&rank=9. Accessed 21 Sep 2010

  8. Bieback K, Schallmoser K, Klüter H et al (2008) Clinical protocols for the isolation and expansion of mesenchymal stromal cells. Transfus Med Hemother 35:286–294

    PubMed  Google Scholar 

  9. Bonab MM, Alimoghaddam K, Talebian F et al (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14. doi:10.1186/1471-2121-7-14, http://www.biomedcentral.com/1471-2121/7/14

    Article  PubMed  Google Scholar 

  10. Caplan AI (2009) Why are MSCs therapeutic? new data: new insight. J Pathol 217:318–324

    Article  PubMed  CAS  Google Scholar 

  11. Chai C, Leong KW (2007) Biomaterials approach to expand and direct differentiation of Stem Cells. Mol Ther 15:467–480

    Article  PubMed  CAS  Google Scholar 

  12. Chem RC (2009) Autologous adipose-derived stem cell transplantation in patients with lipodystrophy. http://clinicaltrials.gov/ct2/show/NCT00715546?term=adipose+tissue+and+stem+cell+and+clinical+trial&rank=15. Accessed 21 Sep 2010

  13. Chen G, Zhou P, Mei N et al (2004) Silk fibroin modified porous poly (epsiloncaprolactone) scaffold for human fibroblast culture in vitro. J Mater Sci Mater Med 15:671–677

    Article  PubMed  CAS  Google Scholar 

  14. CHSL news letter (2010) News and features. Researchers discover that one type of stem cell creates a niche for another type within bone marrow. http://www.cshl.edu/Article-Enikolopov/researchers-discover-that-one-type-of-stem-cell-creates-a-niche-for-another-type-within-bone-marrow. Accessed 2 Sep 2010

  15. De Boer J, Wang HJ, Van Blitterswijk C (2004) Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 10:393–401

    Article  PubMed  Google Scholar 

  16. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  17. Ebert R, Ulmer M, Zeck S et al (2006) Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24:1226–1235

    Article  PubMed  CAS  Google Scholar 

  18. Evans KFK (2008) The role of lipoaspirate injection in the treatment of diabetic lower extremity wounds and venous stasis ulcers. http://clinicaltrials.gov/ct2/show/NCT00815217?term=adipose+tissue+and+stem+cell+and+clinical+trial&rank=17. Accessed 21 Sep 2010

  19. Garcia-Olmo D (2009) Long-term safety and efficacy of adipose-derived stem cells to treat complex perianal fistulas in patients participating in the FATT-1 randomized controlled trial. http://clinicaltrials.gov/ct2/show/NCT01020825?term=adipose+tissue+and+stem+cell+and+clinical+trial&rank=18. Accessed 21 Sep 2010

  20. Garcia-Olmo D, Herreros D, Pascual I et al (2009) Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 52:79–86

    Article  PubMed  Google Scholar 

  21. Garcia-Olmo D, Herreros D, Pascual M et al (2009) Treatment of enterocutaneous fistula in Crohn’s Disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion. Int J Colorectal Dis 24(1):27–30

    Article  PubMed  Google Scholar 

  22. Haniffa MA, Collin MP, Buckley CD et al (2009) Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94:258–263

    Article  PubMed  CAS  Google Scholar 

  23. Hanjaya-Putra D, Gerecht S (2009) Vascular engineering using human embryonic stem cells. Biotechnol Prog 25:2–9

    Article  PubMed  CAS  Google Scholar 

  24. Hipp J, Atala A (2004) Tissue engineering, stem cells, cloning, and parthenogenesis: new paradigms for therapy. J Exp Clin Assist Reprod 1:3, (10 pages) http://www.jexpclinassistreprod.com/content/1/1/3

    Article  PubMed  Google Scholar 

  25. Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3:589–601

    Article  PubMed  CAS  Google Scholar 

  26. Kaneko S (2010) Liver regeneration therapy by intrahepatic arterial administration of autologous adipose tissue derived stromal cells. http://clinicaltrials.gov/ct2/show/NCT01062750?term=adipose+tissue+and+stem+cell+and+clinical+trial&rank=6. Accessed 21 Sep 2010

  27. Kaneko S (2010) Liver regeneration therapy using autologous adipose tissue derived stromal cells. http://clinicaltrials.gov/ct2/show/NCT00913289?term=adipose+tissue+and+stem+cell+and+clinical+trial&rank=5. Accessed 21 Sep 2010

  28. Kern S, Eichler H, Stoeve J et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  PubMed  CAS  Google Scholar 

  29. Kilian O, Flesch I, Wenisch S et al (2004) Effects of platelet growth factors on human mesenchymal stem cells and human endothelial cells in vitro. Eur J Med Res 9:337–344

    PubMed  CAS  Google Scholar 

  30. Kogler G, Sensken S, Wernet P (2006) Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Exp Hematol 34:1589–1595

    Article  PubMed  Google Scholar 

  31. Kucia M, Reca R, Campbell FR et al (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+) Oct-4(+) stem cells identified in adult bonemarrow. Leukemia 20:857–869

    Article  PubMed  CAS  Google Scholar 

  32. Kurosawa H, Kimura M, Noda T et al (2006) Effect of oxygen on in vitro differentiation of mouse embryonic stem cells. J Biosci Bioeng 101:26–30

    Article  PubMed  CAS  Google Scholar 

  33. Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262:509–525

    Article  PubMed  Google Scholar 

  34. Leu S, Lin YC, Yuen CM et al (2010) Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J Transl Med 8:63

    Article  PubMed  Google Scholar 

  35. Lin G, Garcia M, Ning H et al (2008) Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 17:1053–1064

    Article  PubMed  CAS  Google Scholar 

  36. Liu X, Yin D, Zhang Y et al (2007) Vascular endothelial cell senescence mediated by integrin beta4 in vitro. FEBS Lett 581:5337–5342

    Article  PubMed  CAS  Google Scholar 

  37. Lysy PA, Smets F, Sibille C et al (2007) Human skin fibroblasts: From mesodermal to hepatocyte-like differentiation. Hepatology 46:1574–1585

    Article  PubMed  CAS  Google Scholar 

  38. Mann BK, West JL (2002) Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J Biomed Mater Res 60:86–93

    Article  PubMed  CAS  Google Scholar 

  39. Mitchel JB, Mc Intosh K, Zvonic S et al (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell–associated markers. Stem Cells 24:376–385

    Article  Google Scholar 

  40. Moutos FT (2006) A biomimetic 3-D woven composite scaffold that recreates the anisotropic, nonlinear and viscoelastic behavior of articular cartilage. Trans Orthop Res Soc 31:788

    Google Scholar 

  41. Ng F, Boucher S, Koh S et al (2008) PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112(2):295–307

    Article  PubMed  CAS  Google Scholar 

  42. Nilsson B, Korsgren O, Lambris JD et al (2010) Can cells and biomaterials in therapeutic medicine be shielded from innate immune recognition? Trends Immunol 31:32–38

    Article  PubMed  CAS  Google Scholar 

  43. Oh GS (2009) Safety and efficacy of autologous cultured adipocytes in patient with depressed scar. http://clinicaltrials.gov/ct2/show/NCT00992147?term=adipose+tissue+and+stem+cell+and+clinical+trial&rank=10. Accessed 21 Sep 2010

  44. Patel SA, Sherman L, Munoz J et al (2008) Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp 56:1–8

    Article  CAS  Google Scholar 

  45. Placzek MR, Chung IM, Macedo HM et al (2009) Stem cell bioprocessing: fundamentals and principles. J R Soc Interface 6:209–232

    Article  PubMed  CAS  Google Scholar 

  46. Planat-Bénard V, Menard C, André M et al (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94:223–229

    Article  PubMed  Google Scholar 

  47. Planat-Benard V, Silvestre JS, Cousin B et al (2004) Plasticity of human adipose lineage cells toward endothelial cells. Physiological and therapeutic perspectives. Circulation 109:656–663

    Article  PubMed  Google Scholar 

  48. Rodríguez LV, Alfonso Z, Zhang R et al (2006) Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. PNAS 103:12167–12172

    Article  PubMed  Google Scholar 

  49. Ruiz-Salmeron RJ, de la Cuesta A (2010) Intra arterial infusion of autologous mesenchymal stem cells from adipose tissue in diabetic patients with chronic critical limb ischemia. http://clinicaltrials.gov/ct2/show/NCT01079403?term=adipose+tissue+and+stem+cell+and+clinical+trial&rank=2. Accessed 21 Sep 2010

  50. SABioscience (2008) Human mesenchymal stem cell PCR array. http://www.sabiosciences.comAccessed 29 Sep 2008

  51. SABiosciences (2008) Cell development and differentiation miRNA PCR array. http://www.sabiosciences.com/mirna_pcr_product/HTML/MAH-103A.htmlAccessed 21 Jan 2009

  52. SABiosciences (ed) (2008) User manual. Multi-analyte profiler ELISArrayâ„¢ kit multi-protein profiling ELISA kits. SABiosciences Co, Frederick

    Google Scholar 

  53. Salasznyk RM, Williams WA, Boskey A et al (2004) Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Biotechnol 2004:24–34

    Article  PubMed  Google Scholar 

  54. Savitz SI, Dinsmore JH, Wechsler LR et al (2004) Cell therapy for stroke. NeuroRx 1:406–414

    Article  PubMed  Google Scholar 

  55. Schallmoser K, Bartmann C, Rohde E et al (2007) Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion 47:1436–1446

    Article  PubMed  CAS  Google Scholar 

  56. Silva GV, Perin EC, Dohmann HFR et al (2004) Catheter–based transendocardial delivery of autologous bone-marrow-derived mononuclear cells in patients listed for heart transplantation. Tex Heart Inst J 31:214–219

    PubMed  Google Scholar 

  57. Sotiropoulou PA, Perez SA, Salagianni M et al (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:462–471

    Article  PubMed  Google Scholar 

  58. Tang F, Hajkova P, Barton SC et al (2006) MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 34(2):e9

    Article  PubMed  Google Scholar 

  59. Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5:32–45

    Article  PubMed  CAS  Google Scholar 

  60. Uebersax L, Hagenmuller H, Hofmann S et al (2006) Effect of scaffold design on bone morphology in vitro. Tissue Eng 12:3417–3429

    Article  PubMed  CAS  Google Scholar 

  61. Wagner W, Wein F, Seckinger A et al (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416

    Article  PubMed  CAS  Google Scholar 

  62. Willerth SM, Sakiyama-Elbert SE (2008) Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery (July 09, 2008).In: StemBook (ed) The stem cell research community. StemBook. doi:10.3824/stembook.1.1.1, http://www.stembook.org. Accessed 21 Sep 2010

  63. Yañez R, Lamana ML, García-Castro J, et al (2006) Adipose tissue-derived mesenchymal stem cells (AD-MSCs) have immunosuppressive properties applicable for the in vivo control of the graft-versus-host disease (GvHD). Stem cells online doi: 10.1634/stemcells.2006-0228. 33pages. http://www.StemCells.com

  64. Yang H, Miller WM, Papoutsakis ET (2002) Higher pH promotes megakaryocytic maturation and apoptosis. Stem Cells 20:320–328

    Article  PubMed  CAS  Google Scholar 

  65. Yang J, Shi G, Bei J et al (2002) Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-coglycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res 62:438–446

    Article  PubMed  CAS  Google Scholar 

  66. Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanne Adiwinata Pawitan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pawitan, J.A. (2011). Future Research in Adipose Stem Cell Engineering. In: Illouz, YG., Sterodimas, A. (eds) Adipose Stem Cells and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20012-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20012-0_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20011-3

  • Online ISBN: 978-3-642-20012-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics