Skip to main content

Viruses from the Hypersaline Environment

  • Chapter
  • First Online:
Halophiles and Hypersaline Environments

Abstract

Halophilic environments such as solar salterns and salt lakes are enriched in organisms belonging to the domain Archaea. The number of virus-like particles has also been shown to be high. Although most of the described haloarchaeal viruses are head–tail viruses, direct microscopic examination of environmental samples suggests more diversity. In this chapter, we shortly review the existing knowledge of the previously described head–tail viruses and provide more in-depth information on structurally well-characterized icosahedral virus SH1 and the group of enveloped viruses exemplified by HRPV-1 and HHPV-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrescia NG, Cockburn JJ, Grimes JM, Sutton GC, Diprose JM, Butcher SJ, Fuller SD, San Martin C, Burnett RM, Stuart DI, Bamford DH, Bamford JK (2004) Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432:68–74

    Article  PubMed  CAS  Google Scholar 

  • Abrescia NG, Grimes JM, Kivelä HM, Assenberg R, Sutton GC, Butcher SJ, Bamford JK, Bamford DH, Stuart DI (2008) Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2. Mol Cell 31:749–761

    Article  PubMed  CAS  Google Scholar 

  • Baltimore D (1971) Expression of animal virus genomes. Bacteriol Rev 35:235–241

    PubMed  CAS  Google Scholar 

  • Bamford DH (2003) Do viruses form lineages across different domains of life? Res Microbiol 154:231–236

    Article  PubMed  CAS  Google Scholar 

  • Bamford DH, Grimes JM, Stuart DI (2005a) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663

    Article  PubMed  CAS  Google Scholar 

  • Bamford DH, Ravantti JJ, Rönnholm G, Laurinavičius S, Kukkaro P, Dyall-Smith M, Somerharju P, Kalkkinen N, Bamford JK (2005b) Constituents of SH1, a novel lipid-containing virus infecting the halophilic euryarchaeon Haloarcula hispanica. J Virol 79:9097–9107

    Article  PubMed  CAS  Google Scholar 

  • Bath C, Cukalac T, Porter K, Dyall-Smith ML (2006) His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus. Virology 350:228–239

    Article  PubMed  CAS  Google Scholar 

  • Benlloch S, López-López A, Casamayor EO, Øvreås L, Goddard V, Daae FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedrós-Alió C, Rodríguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360

    Article  PubMed  Google Scholar 

  • Bolhuis H, te Poele EM, Rodríguez-Valera F (2004) Isolation and cultivation of Walsby’s square archaeon. Environ Microbiol 6:1287–1291

    Article  PubMed  Google Scholar 

  • Brüssow H, Desiere F (2001) Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 39:213–222

    Article  PubMed  Google Scholar 

  • Brüssow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    Article  PubMed  Google Scholar 

  • Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004a) Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265

    Article  PubMed  CAS  Google Scholar 

  • Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004b) Cultivation of Walsby’s square haloarchaeon. FEMS Microbiol Lett 238:469–473

    PubMed  CAS  Google Scholar 

  • Calvo C, de la Paz AG, Bejar V, Quesada E, Ramos-Cormenzana A (1988) Isolation and characterization of phage F9-11 from a lysogenic Deleya halophila strain. Curr Microbiol 17:49–53

    Article  CAS  Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, Øvreås L, Diez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348

    Article  PubMed  Google Scholar 

  • Daniels LL (1917) On the flora of Great Salt Lake. Am Nat 51:499–506

    Article  Google Scholar 

  • Daniels LL, Wais AC (1990) Ecophysiology of bacteriophage S5100 infecting Halobacterium cutirubrum. Appl Environ Microbiol 56:3605–3608

    PubMed  CAS  Google Scholar 

  • Daniels LL, Wais AC (1998) Virulence in phage populations infecting Halobacterium curtirubrum. FEMS Microbiol Ecol 25:129–134

    CAS  Google Scholar 

  • Diez B, Antón J, Guixa-Boixereu N, Pedrós-Alió C, Rodríguez-Valera F (2000) Pulsed-field gel electrophoresis analysis of virus assemblages present in a hypersaline environment. Int Microbiol 3:159–164

    PubMed  CAS  Google Scholar 

  • Dyall-Smith M, Tang SL, Bath C (2003) Haloarchaeal viruses: how diverse are they? Res Microbiol 154:309–313

    Article  PubMed  Google Scholar 

  • Dybvig K, Nowak JA, Sladek TL, Maniloff J (1985) Identification of an enveloped phage, mycoplasma virus L172, that contains a 14-kilobase single-stranded DNA genome. J Virol 53:384–390

    PubMed  CAS  Google Scholar 

  • Gropp F, Palm P, Zillig W (1989) Expression and regulation of Halobacterium halobium phage ΦH genes. Can J Microbiol 35:182–188

    Article  PubMed  CAS  Google Scholar 

  • Gropp F, Grampp B, Stolt P, Palm P, Zillig W (1992) The immunity-conferring plasmid pΦHL from the Halobacterium salinarium phage ΦH: nucleotide sequence and transcription. Virology 190:45–54

    Article  PubMed  CAS  Google Scholar 

  • Guixa-Boixareu N, Calderon-Paz JI, Heldal M, Bratbak G, Pedrós-Alió C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 11:215–227

    Article  Google Scholar 

  • Happonen LJ, Redder P, Peng X, Reigstad LJ, Prangishvili D, Butcher SJ (2010) Familial relationships in hyperthermo- and acidophilic archaeal viruses. J Virol 84:4747–4754

    Article  PubMed  CAS  Google Scholar 

  • Hendrix RW (2009) Jumbo bacteriophages. Curr Top Microbiol Immunol 328:229–240

    Article  PubMed  CAS  Google Scholar 

  • Hendrix RW, Lawrence JG, Hatfull GF, Casjens S (2000) The origins and ongoing evolution of viruses. Trends Microbiol 8:504–508

    Article  PubMed  CAS  Google Scholar 

  • Holmes ML, Pfeifer F, Dyall-Smith ML (1995) Analysis of the halobacterial plasmid pHK2 minimal replicon. Gene 153:117–121

    Article  PubMed  CAS  Google Scholar 

  • Ilyina TV, Koonin EV (1992) Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 20:3279–3285

    Article  PubMed  CAS  Google Scholar 

  • Jäälinoja HT, Roine E, Laurinmäki P, Kivelä HM, Bamford DH, Butcher SJ (2008) Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proc Natl Acad Sci USA 105:8008–8013

    Article  PubMed  Google Scholar 

  • Jaatinen ST, Happonen LJ, Laurinmäki P, Butcher SJ, Bamford DH (2008) Biochemical and structural characterisation of membrane-containing icosahedral dsDNA bacteriophages infecting thermophilic Thermus thermophilus. Virology 379:10–19

    Article  PubMed  CAS  Google Scholar 

  • Jalasvuori M, Jaatinen ST, Laurinavičius S, Ahola-Iivarinen E, Kalkkinen N, Bamford DH, Bamford JK (2009) The closest relatives of icosahedral viruses of thermophilic bacteria are among viruses and plasmids of the halophilic archaea. J Virol 83:9388–9397

    Article  PubMed  CAS  Google Scholar 

  • Kauri T, Ackermann H-W, Goel U, Kushner DJ (1991) A bacteriophage of a moderately halophilic bacterium. Arch Microbiol 156:435–438

    CAS  Google Scholar 

  • Ken R, Hackett NR (1991) Halobacterium halobium strains lysogenic for phage ΦH contain a protein resembling coliphage repressors. J Bacteriol 173:955–960

    PubMed  CAS  Google Scholar 

  • Khayat R, Tang L, Larson ET, Lawrence CM, Young M, Johnson JE (2005) Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proc Natl Acad Sci USA 102:18944–18949

    Article  PubMed  CAS  Google Scholar 

  • Kivelä HM, Roine E, Kukkaro P, Laurinavičius S, Somerharju P, Bamford DH (2006) Quantitative dissociation of archaeal virus SH1 reveals distinct capsid proteins and a lipid core. Virology 356:4–11

    Article  PubMed  Google Scholar 

  • Klein R, Baranyi U, Rössler N, Greineder B, Scholz H, Witte A (2002) Natrialba magadii virus ΦCh1: first complete nucleotide sequence and functional organization of a virus infecting a haloalkaliphilic archaeon. Mol Microbiol 45:851–863

    Article  PubMed  CAS  Google Scholar 

  • Krupovič M, Bamford DH (2008) Virus evolution: how far does the double β-barrel viral lineage extend? Nat Rev Microbiol 6:941–948

    Article  PubMed  Google Scholar 

  • Krupovič M, Forterre P, Bamford DH (2010) Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J Mol Biol 397:144–160

    Article  PubMed  Google Scholar 

  • Kukkaro P, Bamford DH (2009) Virus-host interactions in environments with a wide range of ionic strengths. Environ Microbiol Rep 1:71–77

    Article  CAS  Google Scholar 

  • Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P (2008) A bioinformatician’s guide to metagenomics. Microbiol Mol Biol Rev 72:557–578

    Article  PubMed  CAS  Google Scholar 

  • Laurinmäki PA, Huiskonen JT, Bamford DH, Butcher SJ (2005) Membrane proteins modulate the bilayer curvature in the bacterial virus Bam35. Structure 13:1819–1828

    Article  PubMed  Google Scholar 

  • Lubbers MW, Waterfield NR, Beresford TP, Le Page RW, Jarvis AW (1995) Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Appl Environ Microbiol 61:4348–4356

    PubMed  CAS  Google Scholar 

  • Maniloff J, Kampo GJ, Dascher CC (1994) Sequence analysis of a unique temperature phage: mycoplasma virus L2. Gene 141:1–8

    Article  PubMed  CAS  Google Scholar 

  • Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895

    Article  PubMed  CAS  Google Scholar 

  • Nandhagopal N, Simpson AA, Gurnon JR, Yan X, Baker TS, Graves MV, Van Etten JL, Rossmann MG (2002) The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Proc Natl Acad Sci USA 99:14758–14763

    Article  PubMed  CAS  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4:2

    PubMed  Google Scholar 

  • Oren A, Bratbak G, Heldal M (1997) Occurrence of virus-like particles in the Dead Sea. Extremophiles 1:143–149

    Article  PubMed  CAS  Google Scholar 

  • Pagaling E, Haigh RD, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2007) Sequence analysis of an Archaeal virus isolated from a hypersaline lake in Inner Mongolia, China. BMC Genomics 8:410

    Article  PubMed  Google Scholar 

  • Papke RT, Koenig JE, Rodríguez-Valera F, Doolittle WF (2004) Frequent recombination in a saltern population of Halorubrum. Science 306:1928–1929

    PubMed  CAS  Google Scholar 

  • Pauling C (1982) Bacteriophages of Halobacterium halobium: isolated from fermented fish sauce and primary characterization. Can J Microbiol 28:916–921

    Article  PubMed  CAS  Google Scholar 

  • Pedrós-Alió C, Caldéron-Paz JI, MacLean MH, Medina G, Marrasé C, Gasol JM, Guixa-Boixereu N (2000) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155

    PubMed  Google Scholar 

  • Pfeifer F, Weidinger G, Goebel W (1981) Genetic variability in Halobacterium halobium. J Bacteriol 145:375–381

    PubMed  CAS  Google Scholar 

  • Pietilä MK, Roine E, Paulin L, Kalkkinen N, Bamford DH (2009) An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope. Mol Microbiol 72:307–319

    Article  PubMed  Google Scholar 

  • Pietilä MK, Laurinavicius S, Sund J, Roine E, Bamford DH (2010) The single-stranded DNA genome of novel archaeal virus Halorubrum pleomorphic virus 1 is enclosed in the envelope decorated with glycoprotein spikes. J Virol 84:788–798

    Article  PubMed  Google Scholar 

  • Porter K, Dyall-Smith M (2006) The isolation and study of viruses of halophilic microorganisms. In: Rainey FA, Oren A (eds) Methods in microbiology, vol 35, Extremophiles. Elsevier/Academic, London, pp 681–702

    Google Scholar 

  • Porter K, Dyall-Smith ML (2008) Transfection of haloarchaea by the DNAs of spindle and round haloviruses and the use of transposon mutagenesis to identify non-essential regions. Mol Microbiol 70:1236–1245

    Article  PubMed  CAS  Google Scholar 

  • Porter K, Kukkaro P, Bamford JK, Bath C, Kivelä HM, Dyall-Smith ML, Bamford DH (2005) SH1: a novel, spherical halovirus isolated from an Australian hypersaline lake. Virology 335:22–33

    Article  PubMed  CAS  Google Scholar 

  • Porter K, Russ BE, Dyall-Smith ML (2007) Virus-host interactions in salt lakes. Curr Opin Microbiol 10:418–424

    Article  PubMed  CAS  Google Scholar 

  • Porter K, Russ BE, Yang J, Dyall-Smith ML (2008a) The transcription programme of the protein-primed halovirus SH1. Microbiology 154:3599–3608

    Article  PubMed  CAS  Google Scholar 

  • Porter K, Russ BE, Thorburn AN, Dyall-Smith ML (2008b) Viruses infecting Euryarchaea. In: Mahy BWJ, van Regenmortel MHV (eds) Encyclopedia of virology, vol 5. Elsevier, Oxford, pp 411–423

    Chapter  Google Scholar 

  • Prangishvili D, Forterre P, Garrett RA (2006) Viruses of the Archaea: a unifying view. Nat Rev Microbiol 4:837–848

    Article  PubMed  CAS  Google Scholar 

  • Rainey FA, Oren A (2006) Extremophile microorganisms and the methods to handle them. In: Rainey FA, Oren A (eds) Methods in microbiology, vol 35, Extremophiles. Elsevier/Academic, London, pp 1–25

    Google Scholar 

  • Reiter WD, Zillig W, Palm P (1988) Archaebacterial viruses. Adv Virus Res 34:143–188

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pašić L, Thingstad TF, Rohwer F, Mira A (2009) Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7:828–836

    Article  PubMed  CAS  Google Scholar 

  • Roine E, Kukkaro P, Paulin L, Laurinavičius S, Domanska A, Somerharju P, Bamford DH (2010) New, closely related haloarchaeal viral elements with different nucleic acid types. J Virol 84:3682–3689

    Article  PubMed  CAS  Google Scholar 

  • Rössler N, Klein R, Scholz H, Witte A (2004) Inversion within the haloalkaliphilic virus ΦCh1 DNA results in differential expression of structural proteins. Mol Microbiol 52:413–426

    Article  PubMed  Google Scholar 

  • Salas M (1984) A new mechanism for the initiation of replication of Φ29 and adenovirus DNA: priming by the terminal protein. Curr Top Microbiol Immunol 109:89–106

    PubMed  CAS  Google Scholar 

  • Santos F, Meyerdierks A, Peña A, Róssello-Mora R, Amann R, Antón J (2007) Metagenomic approach to the study of halophages: the environmental halophage 1. Environ Microbiol 9:1711–1723

    Article  PubMed  CAS  Google Scholar 

  • Santos F, Yarza P, Parro V, Briones C, Antón J (2010) The metavirome of a hypersaline environment. Environ Microbiol 12:2965–2976

    Article  PubMed  CAS  Google Scholar 

  • Sapienza C, Rose MR, Doolittle WF (1982) High-frequency genomic rearrangements involving archaebacterial repeat sequence elements. Nature 299:182–185

    Article  PubMed  CAS  Google Scholar 

  • Saren AM, Ravantti JJ, Benson SD, Burnett RM, Paulin L, Bamford DH, Bamford JK (2005) A snapshot of viral evolution from genome analysis of the tectiviridae family. J Mol Biol 350:427–440

    Article  PubMed  CAS  Google Scholar 

  • Schnabel H (1984) An immune strain of Halobacterium halobium carries the invertible L segment of phage ΦH as a plasmid. Proc Natl Acad Sci USA 81:1017–1020

    Article  PubMed  CAS  Google Scholar 

  • Schnabel H, Schramm E, Schnabel R, Zillig W (1982a) Structural variability in the genome of phage ΦH of Halobacterium halobium. Mol Gen Genet 188:370–377

    Article  CAS  Google Scholar 

  • Schnabel H, Zillig W, Pfaffle M, Schnabel R, Michel H, Delius H (1982b) Halobacterium halobium phage ΦH. EMBO J 1:87–92

    PubMed  CAS  Google Scholar 

  • Schnabel H, Palm P, Dick K, Grampp B (1984) Sequence analysis of the insertion element ISH1.8 and of associated structural changes in the genome of phage ΦH of the archaebacterium Halobacterium halobium. EMBO J 3:1717–1722

    PubMed  CAS  Google Scholar 

  • Sime-Ngando T, Lucas S, Robin A, Tucker KP, Colombet J, Bettarel Y, Desmond E, Gribaldo S, Forterre P, Breitbart M, Prangishvili D (2011) Diversity of virus-host systems in hypersaline Lake Retba, Senegal. Environ Microbiol 13: no. doi:10.1111/j.1462-2920.2010.02323.x

  • Simsek M, DasSarma S, RajBhandary UL, Khorana HG (1982) A transposable element from Halobacterium halobium which inactivates the bacteriorhodopsin gene. Proc Natl Acad Sci USA 79:7268–7272

    Article  PubMed  CAS  Google Scholar 

  • Stedman KM, Porter K, Dyall-Smith ML (2009) The isolation of viruses infecting Archaea. In: Wilhelm SW, Weinbauer MG, Suttle CA (eds) Manual of aquatic viral ecology. American Society of Limnology and Oceanography, Waco, TX, pp 57–64

    Google Scholar 

  • Stolt P, Zillig W (1992) In vivo studies on the effects of immunity genes on early lytic transcription in the Halobacterium salinarium phage ΦH. Mol Gen Genet 235:197–204

    Article  PubMed  CAS  Google Scholar 

  • Stolt P, Zillig W (1993a) In vivo and in vitro analysis of transcription of the L region from the Halobacterium salinarium phage ΦH: definition of a repressor-enhancing gene. Virology 195:649–658

    Article  PubMed  CAS  Google Scholar 

  • Stolt P, Zillig W (1993b) Antisense RNA mediates transcriptional processing in an archaebacterium, indicating a novel kind of RNase activity. Mol Microbiol 7:875–882

    Article  PubMed  CAS  Google Scholar 

  • Strömsten NJ, Bamford DH, Bamford JK (2005) In vitro DNA packaging of PRD1: a common mechanism for internal-membrane viruses. J Mol Biol 348:617–629

    Article  PubMed  Google Scholar 

  • Suttle CA (2007) Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    Article  PubMed  CAS  Google Scholar 

  • Tang SL, Nuttall S, Ngui K, Fisher C, Lopez P, Dyall-Smith M (2002) HF2: a double-stranded DNA tailed haloarchaeal virus with a mosaic genome. Mol Microbiol 44:283–296

    Article  PubMed  CAS  Google Scholar 

  • Torsvik T, Dundas ID (1974) Bacteriophage of Halobacterium salinarium. Nature 248:680–681

    Article  PubMed  CAS  Google Scholar 

  • Torsvik T, Dundas ID (1980) Persisting phage infection in Halobacterium salinarium str. 1. J Gen Virol 47:29–36

    Article  CAS  Google Scholar 

  • Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814

    Article  PubMed  CAS  Google Scholar 

  • Ventosa A, Oren A (1996) Halobacterium salinarum nom. corrig., a name to replace Halobacterium salinarium (Elazari-Volcani) and to include Halobacterium halobium and Halobacterium cutirubrum. Int J Syst Bacteriol 46:361

    Article  Google Scholar 

  • Vogelsang-Wenke H, Oesterhelt D (1988) Isolation of a halobacterial phage with a fully cytosine-methylated genome. Mol Gen Genet 211:407–414

    Article  CAS  Google Scholar 

  • Wais AC, Kon M, MacDonald RE, Stollar BD (1975) Salt-dependent bacteriophage infecting Halobacterium cutirubrum and H. halobium. Nature 256:314–315

    Article  PubMed  CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  • Walsby AE (1980) A square bacterium. Nature 238:69–71

    Article  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  PubMed  CAS  Google Scholar 

  • Wilkansky B (1936) Life in the Dead Sea. Nature 138:467

    Article  Google Scholar 

  • Witte A, Baranyi U, Klein R, Sulzner M, Luo C, Wanner G, Kruger DH, Lubitz W (1997) Characterization of Natronobacterium magadii phage ΦCh1, a unique archaeal phage containing DNA and RNA. Mol Microbiol 23:603–616

    Article  PubMed  CAS  Google Scholar 

  • Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6:e1000667

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Academy of Finland Centre of Excellence Program in Virus Research grant 11296841 (2006–2011), by the University of Helsinki Three Year Grant 2010–2012 to E.R., and by the Academy of Finland grant (1127665) to H.M.O. We acknowledge Dennis Bamford for critical comments on our manuscript and Petra Kukkaro for contributing to the studies on the transmission electron microscopy of the pleomorphic viruses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elina Roine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roine, E., Oksanen, H.M. (2011). Viruses from the Hypersaline Environment. In: Ventosa, A., Oren, A., Ma, Y. (eds) Halophiles and Hypersaline Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20198-1_8

Download citation

Publish with us

Policies and ethics