Skip to main content

Possible Impacts of Climate Change on Forest Soil Health

  • Chapter
  • First Online:
Soil Health and Climate Change

Part of the book series: Soil Biology ((SOILBIOL,volume 29))

Abstract

A changing climate could induce a myriad of changes in forests and thus in forest soil health at the global scale, as a consequence of both direct and indirect impacts. The direct effects include increased temperature and atmospheric concentration of CO2, changes in precipitation and the frequency and severity of extreme climatic events such as heatwaves, droughts, storms (rain, ice and wind) and frosts. The indirect effects can be very significant and rapid, and are mediated, in particular, by changes in the frequency and impacts of outbreaks of pests and pathogens, changes in fire regimes and changes in vegetation growth and species composition (including from invasive species), which affect litter inputs and many associated soil processes. Changes in soil health will be location specific – determined by very complex interactions between climate, terrain, vegetation and soil type. Significant soil change can occur within days following severe disturbances, but may also take many decades when associated with succession of vegetation. Soil change can also be either moderated or magnified by management responses to the risks or opportunities created by climate change. While many important soil properties and processes can be affected, soil organic matter is a key variable affecting the health and fertility of forest soils that is very sensitive to both climate change and forest management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ågren GL, Kirschbaum MUF, Johnson DW, Boasatt E (1996) Ecosystem physiology – soil organic matter. In: Breymeyer AI, Hall DO, Melillo JM, Ågren GL (eds) Global change: effects on coniferous forests and grasslands. Wiley, New York, pp 207–228

    Google Scholar 

  • Allen DE, Mendham D, Singh BP, Cowie AL, Wang W, Dalal RC, Raison RJ (2009) Nitrous oxide and methane emissions from soil are reduced following afforestation of pasture lands in three contrasting climatic zones. Aust J Soil Res 47:443–458

    CAS  Google Scholar 

  • Arias ME, González-Pérez JA, González-Vila FJ, Ball AS (2005) Soil health – a new challenge for microbiologists and chemists. Intern Microbiol 8:13–21

    CAS  Google Scholar 

  • Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of tree species on soil solutions in acidic conditions. Ann For Sci 59:233–253

    Article  Google Scholar 

  • Bauhus J, Khanna PK, Hopmans P, Weston C (2002) Is soil carbon a useful indicator of sustainable forest management? A case study from native eucalypt forests of south-eastern Australia. For Ecol Manage 171:59–74

    Article  Google Scholar 

  • Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248

    Article  PubMed  CAS  Google Scholar 

  • Bergot M, Cloppet E, Pérarnaud V, Déqué M, Marçais B, Ceprez-Loustau M-L (2004) Simulation of potential range expansion by Phytophthora cinnamomi under climate change. Glob Change Biol 10:1539–1552

    Article  Google Scholar 

  • Binkley D, Menyailo O (2005) Gaining insights on the effects of trees on soils. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. Springer, New York, pp 1–16

    Chapter  Google Scholar 

  • Borken W, Savage K, Davidson EA, Trumbore S (2006) Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Glob Change Biol 12:177–193

    Article  Google Scholar 

  • Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P (2008) Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos Trans R Soc Lond B Biol Sci 363(1498):1839–1848

    Article  PubMed  Google Scholar 

  • Brasier CM, Scott JK (1994) European oak declines and global warming: a theoretical assessment with special reference to the activity of Phytophthora cinnamomi. Bull OEPP 24:221–232

    Google Scholar 

  • Brumme R, Borken W (2009) N2O emission from temperate beech forest soils. In: Brumme R, Khanna PK (eds) Functioning and management of European beech ecosystems. Ecological studies 208. Springer, Berlin, pp 353–367

    Google Scholar 

  • Brumme R, Khanna PK (eds) (2009) Functioning and management of European beech ecosystems. Ecological studies 208. Springer, Berlin

    Google Scholar 

  • Byram GM (1959) Combustion of forest fuels. In: Davis KP (ed) Forest fire: control and use. McGraw-Hill, New York, pp 61–89

    Google Scholar 

  • Chakraborty S, Murray GM, Mangarey PA, Yonow T, O’Brien RG, Croft BJ, Sivasithamparam K, Old KM, Dudzinski MJ, Sutherst RW, PenroseLJ AC, Emmett RW (1998) Potential impact of climate change on plant diseases of economic significance to Australia. Australas Plant Pathol 27:15–35

    Article  Google Scholar 

  • Ciais P et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  PubMed  CAS  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  PubMed  CAS  Google Scholar 

  • Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Quart J R Meteorol Soc 96:320–325

    Article  Google Scholar 

  • Dale VH, Joyce LA, Mcnulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. Bioscience 51:723–734

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon and feedbacks to climate change. Nature 7081:165–173

    Article  Google Scholar 

  • Davison EM, Shearer BL (1989) Phytophthora spp. in indigenous forests in Australia. N Z J For Sci 19:277–289

    Google Scholar 

  • Doerr SH, Shakesby RA, MacDonald LH (2009) Soil water repellancy: a key factor in post-fire erosion (Chapter 7). In: Cerda A, Robichaud PR (eds) Fire effects on soils and restoration strategies. Science publishers, Enfield, p 589

    Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11

    Article  Google Scholar 

  • Egnell G, Valinger E (2003) Survival, growth, and growth allocation of planted Scots pine trees after different levels of biomass removal in clear-felling. For Ecol Manage 177:65–74

    Article  Google Scholar 

  • Emmett BA, Beier B, Estiarte M, Tietema A, Kristensen HL, Williams D, Penuelas J, Schmidt I, Sowerby A (2004) The response of soil processes to climate change: results from manipulation studies of shrublands across an environmental gradient. Ecosystems 7:625–637

    Article  Google Scholar 

  • Fagg PC (1987) Establishment and early growth of indigenous eucalypts sown on forest sites infested with Phytophthora cinnamomi in East Gippsland. Aust For Ecol Manage 20:53–78

    Article  Google Scholar 

  • Farrow RA (1996) Insect pests of eucalypts on farms and in plantations. Identification Leaflet No.4. Sawflies. CSIRO, Australia

    Google Scholar 

  • Fischlin A, Midgley GF, Price JT, Leemans R, Gopal B, Turley C, Rounsevell MDA, Dube OP, Tarazona J, Velichko AA (2007) Ecosystems, their properties, goods, and services. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 211–272

    Google Scholar 

  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    Article  PubMed  CAS  Google Scholar 

  • Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001) Export of organic carbon from peat soils. Nature 412:785

    Article  PubMed  CAS  Google Scholar 

  • Freeman C, Ostle NJ, Fenner N, Kang H (2004) A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol Biochem 36:1663–1667

    Article  CAS  Google Scholar 

  • Friedlingstein P, Joel G, Field C, Fung I (1999) Toward an allocation scheme for global terrestrial carbon models. Glob Change Biol 5:755–770

    Article  Google Scholar 

  • Gardiner BA, Quine CP (2000) Management of forests to reduce the risk of abiotic damage – a review with particular reference to the effects of strong winds. For Ecol Manage 135:261–277

    Article  Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition of organic carbon in mineral soils do not vary with temperature. Nature 6780:858–861

    Article  Google Scholar 

  • Giardina CP, Coleman MD, Hancock JE, King JS, Lilleskov EA, Loya WM, Pregitzer KS, Ryan MG, Trettin CC (2005) The response of belowground carbon allocation in forests to global change. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. NATO Science Series. Kluwer Academic Publishers, Dordrecht, pp 119–154

    Chapter  Google Scholar 

  • Grace J, Rayment M (2000) Respiration in the balance. Nature 404:819–820

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn F, Sprinnler D, Bundt M, Blaser P, Siegwolf R (2003) The input and fate of new C in two forest soils under elevated CO2. Glob Change Biol 9:862–872

    Article  Google Scholar 

  • Holden J, Shotbolt L, Bonn A, Burt TP, Chapman PJ, Dougill AJ, Fraser EDG, Hubacek K, Irvine B, Kirkby MJ, Reed MS, Prell C, Stagl S, Stringer LC, Turner A, Worrall F (2007) Environmental change in moorland landscapes. Earth Sci Rev 82:75–100

    Article  Google Scholar 

  • Hyvönen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    Article  PubMed  Google Scholar 

  • IPCC (2006) Chapter 2 ‘Generic methodologies applicable to multiple land-use categories’ Volume 4. In: 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC Secretariat, Geneva

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis; contribution of Working Group I to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change. UNEP, New York, 996 p

    Google Scholar 

  • Ise T, Moorcroft PR (2006) The global-scale temperature and moisture dependencies of soil organic carbon decomposition: an analysis using a mechanistic decomposition model. Biogeochemistry 80:217–231

    Article  CAS  Google Scholar 

  • Jastrow JD, Miller RM, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE (2005) Elevated carbon dioxide increases soils carbon. Glob Change Biol 11:2057–2064

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Keith H, Leuning R, Jacobsen KL, Cleugh HA, van Gorsel E, Raison RJ, Medlyn BE, Winters A, Keitel C (2009) Multiple measurements constrain estimates of net carbon exchange by a Eucalyptus forest. Agric For Meteorol 149:535–558

    Article  Google Scholar 

  • Kim Y, Tanaka N (2003) Effect of forest fire on the fluxes of CO2, CH4 and N2O in boreal forest soils, interior Alaska. J Geophys Res 108(D1):8154. doi:10.1029/2001JD000663

    Google Scholar 

  • Kinako PDS, Gimingham CH (1980) Heather burning and soil erosion on upland heaths in Scotland. J Environ Manage 10:277–284

    Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposiotion and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition – still a topic of debate. Soil Biol Biochem 38:2510–2518

    Article  CAS  Google Scholar 

  • Kirschbaum MUF, Keith H, Leuning R, Cleugh HA, Jacobsen KL, van Gorsel E, Raison RJ (2007) Modelling net ecosystem carbon and water exchange of a temperate Eucalyptus delegatensis forest using multiple constraints. Agric For Meteorol 145:48–68

    Article  Google Scholar 

  • Knops JMH, Naeem S, Reich PB (2007) The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Glob Change Biol 13:1960–1971

    Article  Google Scholar 

  • Krull ES, Skjemstad JO, Baldock JA (2004). Functions of soil organic matter and the effect on soil properties. GRDC report, Project CSO 00029. http://www.grdc.com.au/growers/res_summ/cso00029/contents.html. Sourced Nov., 2010

  • Landsberg J (2003) Modelling forest ecosystems: state of the art, challenges, and future directions. Can J For Res 33:385–397

    Article  Google Scholar 

  • Leckebusch GC, Koffi B, Ulbrich U, Pinto G, Spangehl T, Zacharias S (2006) Analysis of frequency and intensity of European winter storm events from a multi- model perspective, at synoptic and regional scales. Climate Res 31:59–74

    Article  Google Scholar 

  • Leuzinger S, Zotz G, Asshoff R, Körner C (2005) Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol 25:641–650

    PubMed  Google Scholar 

  • Lichter J, Barron SH, Bevacqua CE, Finzi AC, Iriving KF, Stemmler EA, Schlesinger WH (2005) Soil carbon sequestration and turnover in a pine forest after six years of atmospheric CO2 enrichment. Ecology 86:1835–1847

    Article  Google Scholar 

  • Litton CM, Giardina CP (2008) Below-ground carbon flux and partitioning: global patterns and response to temperature. Funct Ecol 22:941–954

    Article  Google Scholar 

  • Litton CM, Raich JW, Ryan MG (2007) Review: carbon allocation in forest ecosystems. Glob Change Biol 13:2089–2109

    Article  Google Scholar 

  • Lucier A, Ayres M, Karnosky D, Thompson I, Loehle C, Percy K, Sohngen B (2009) Forest responses and vulnerabilities to recent climate change. In: Seppala R, Buck A, Katila P (eds) Adaptation of forests and people to climate change – a global assessment report. IUFRO World Series, Vol 22. IUFRO, Helsinki, 224 pp

    Google Scholar 

  • Marks GC, Kassaby FY, Reynolds ST (1972) Dieback in the mixed hardwood forests of Eastern Victoria; a preliminary report. Aust J Bot 20:141–151

    Article  Google Scholar 

  • Matzner E (2004) Biogeochemistry of forested catchments in a changing environment, a German case study, Ecological Studies 172. Springer, Berlin

    Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540

    Article  PubMed  CAS  Google Scholar 

  • Moore BA, Allard GB (2008) Forest health and biosecurity working papers FBS/34E. Forest Resources Development Service, Forest Management Division. FAO, Rome

    Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165

    Article  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences USA 107:19,368–19,373

    Google Scholar 

  • Old KM, Floyd RB (2000) Threats to plantations from pests and diseases. In: Nambiar S, Cromer R, Brown AG (eds) Restoring tree cover in the Murray Darling Basin. CSIRO Forestry and Forest Products, Canberra, 60 pp (ISBN 0643063196)

    Google Scholar 

  • Old KM, Stone C (2005) Vulnerability of Australian forest carbon sinks to pests and pathogens in a changing climate: a discussion paper prepared for the Australian Greenhouse Office. Australian Greenhouse Office, Canberra

    Google Scholar 

  • Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Johnson DW, Law BE, Luo Y, Megonigal JP, Olsrud M, Ryan MG, Wan S (2004) Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol 162:311–322

    Article  Google Scholar 

  • Pilkington MG, Caporn SJM, Carroll JA, Cresswell N, Phoenix GK, Lee JA, Emmett BA, Sparks T (2007) Impacts of burning and increased nitrogen deposition on nitrogen pools and leaching in an upland moor. J Ecol 95:1195–1207

    Article  CAS  Google Scholar 

  • Podger FD, Mummary DC, Palzer CR, Brown MJ (1990) Bioclimatic analysis of the distribution and damage to native plants in Tasmania by Phytophthora cinnamomi. Aust J Ecol 15:281–289

    Article  Google Scholar 

  • Pook EW (1985) Canopy dynamics of Eucalyptus maculata 3. Effects of drought. Aust J Bot 33:65–80

    Article  Google Scholar 

  • Quinton JN, Catt JA, Wood GA, Steer J (2006) Soil carbon losses by water erosion: experimentation and modeling at field and national scales in the UK. Agric Ecosyst Environ 112:87–102

    Article  Google Scholar 

  • Raison RJ, Kirschbaum MUF (2008) Fire and the carbon balance of terrestrial ecosystems. Geophys Res Abstr 10:EGU2008-A-02946

    Google Scholar 

  • Raison RJ, Woods PV, Jakobsen BF, Bary GAV (1986) Soil temperatures during and following low-intensity prescribed burning in a Eucalyptus pauciflora forest. Aust J Soil Res 24:33–47

    Article  Google Scholar 

  • Raison RJ, O’Connell AM, Khanna PK, Keith H (1993) Effects of repeated fires on nitrogen and phosphorus budgets and cycling processes in forest ecosystems. In: Trabaud L, Prodon R (eds) Fire in Mediterranean ecosystems. Ecosystem Research Report 5:347–363. Commission of the European Communities, Brussels

    Google Scholar 

  • Raison RJ, Eamus D, Gifford RM, McGrath J (2007) The feasibility of forest free air CO2 enrichment (FACE) experimentation in Australia. Australian Greenhouse Office, Canberra (during 2010 renamed the Department of Climate Change and Energy Efficiency), 110pp. (ISBN: 987-1-921297-68-7)

    Google Scholar 

  • Raison RJ, Khanna PK, Romanya J, Serrasolses I (2009) Effect of fire on forest nutrient cycles. In: Cerda A, Robichaud P (eds) Fire effects on soils and restoration strategies. Science Publisher, Enfield, pp 225–256

    Chapter  Google Scholar 

  • Raulund-Rasmussen K, Stupak I, Clarke N, Callesen I, Helmisaari HS, Karltun E, Varnagiryte-Kabasinskiene I (2008) Effects of very intensive forest biomass harvesting on short and long term site productivity. In: Röser D, Asikainen A, Raulund-Rasmussen K, Stupak I (eds) Sustainable use of forest biomass for energy. A synthesis with focus on the Baltic and Nordic region. Springer, Dordrecht, pp 29–78

    Google Scholar 

  • Reay DS, Dentener F, Smith P, Grace J, Feely R (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437. doi:10.1038/ngeo230

    Google Scholar 

  • Reichstein M et al (2007) Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophys Res Lett 34:L01402. doi:10.1029/2006GL027880

  • Richardson J, Björheden R, Hakkila P, Lowe AT, Smith CT (eds) (2002) Bioenergy from sustainable forestry: guiding principles and practices. Kluwer Academic, Dordrecht

    Google Scholar 

  • Roberts SD, Harrington CA, Terry TA (2005) Harvest residue and competing vegetation affect soil moisture, soil temperature, N availability, and Douglas-fir seedling growth. For Ecol Manage 205:333–350

    Article  Google Scholar 

  • Roxburgh SH, Barrett DJ, Berry SL, Carter JO, Davies ID, Gifford RM, Kirschbaum MUF, McBeth BP, Noble IR, Parton WG, Raupach MR, Roderick ML (2004) A critical overview of net primary productivity model estimates for the Australian continent. Funct Plant Biol 31:1043–1059

    Article  Google Scholar 

  • Rustad L, Campbell CJ, Marion MG, Norby NR, Mitchell MM, Hartley HA, Cornelissen CJ, Gurevitch GJ, Gcte N, Gcte N (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Sauerborn P, Klein A, Botschek J, Skowronek A (1999) Future rainfall erosivity derived from large-scale climate models – methods and scenarios for a humid region. Geoderma 93:269–276

    Article  Google Scholar 

  • Schimel D, Melillo J, Tian H, McGuire AD, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287(5460):2004–2006

    Article  PubMed  CAS  Google Scholar 

  • Schulze D, Freibauer A (2005) Carbon unlocked from soils. Nature 437:205–206

    Article  PubMed  CAS  Google Scholar 

  • Shearer BL, Smith IW (2000) Diseases of eucalypts caused by soilborne species of Phytophthora and Pythium. In: Keane PJ, Kile GA, Podger FD, Brown BN (eds) Diseases and pathogens of eucalypts. CSIRO, Collingwood, pp 259–291

    Google Scholar 

  • Simpson JA, Podger FD (2000) Management of eucalyptus diseases-options and constraints. In: Keane PJ, Kile GA, Podger FD, Brown BN (eds) Diseases and pathogens of eucalypts. CSIRO, Collingwood, pp 411–425

    Google Scholar 

  • Six J, Callewaert P, Lenders S, De Gryze S, Morris SJ, Gregorich EG, Paul EA, Paustian K (2002) Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Sci Soc Am J 66:1981–1987

    Article  CAS  Google Scholar 

  • Stevenson AC, Rhodes AN, Kirkpatrick AH, MacDonald AJ (1996) The determination of fire histories and an assessment of their effects on moorland soils and vegetation. Research, Survey and Monitoring Report No.16. Scottish Natural Heritage, Edinburgh

    Google Scholar 

  • Sverdrup H, Rosen K (1998) Long-term base cation mass balances for Swedish forests and the concept of sustainability. For Ecol Manage 110:221–236

    Article  Google Scholar 

  • Swedish National Board of Forestry (2002) Recommendations for the Extraction of Forest Fuel and Compensation Fertilising. Samuelsson H (Ed.) Skogsstyrelsen National Board of Forestry, Jönköping, Sweden, 25 pp

    Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes :an intercomparsion of model-simulated historical and future changes in extreme events. Climate Change 79:185–211

    Article  Google Scholar 

  • Teepe R, Brumme R, Beese F, Ludwig B (2004) Nitrous oxide emission and methane consumption following compaction of forest soils. Soil Sci Soc Am J 68:605–611

    Article  CAS  Google Scholar 

  • Terry AC, Ashmore MR, Power SA, Allchin EA, Heil GW (2004) Modelling the impacts of atmospheric nitrogen deposition on Calluna-dominated ecosystems in the UK. J Appl Ecol 41:897–909

    Article  Google Scholar 

  • Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS, Goldstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric For Meteorol 113:185–222

    Article  Google Scholar 

  • Tobita H, Kitao M, Koike T, Maruyama Y (2005) Effects of elevated CO2 and nitrogen availability on nodulation of Alnus hirsuta Turcz. Phyton 45:125–131

    CAS  Google Scholar 

  • Van Der Werf GR, Dempewolf J, Trigg SN, Randerson JT, Kasibhatla PS, Giglio L, Murdiyarso D, Peters W, Morton DC, Collatz GJ, Dolman AJ, DeFries RS (2008) Climate regulation of fire emissions and deforestation in equatorial Asia. Proc Natl Acad Sci USA 105:20350–20355

    Article  PubMed  Google Scholar 

  • Van Groenigen KJ, Six J, Hungate BA, de Graaff MA, van Breemen N, Van Kessel C (2006) Element interaction limit carbon storage. Proc Nat Acad Sci USA 103:6571–6574

    Article  PubMed  Google Scholar 

  • Vesterdal L, Ritter E, Gundersen P (2002) Change in soil organic carbon following afforestation of former arable land. For Ecol Manage 169:137–147

    Article  Google Scholar 

  • Volney WJA, Fleming RA (2000) Climate change and impacts of boreal forest insects. Agric Ecosyst Environ 82:283–294

    Article  Google Scholar 

  • Worrall F, Burt T, Shedden R (2003) Long term records of riverine dissolved organic matter. Biogeochemistry 64:165–178

    Article  CAS  Google Scholar 

  • Zabowski D, Chambreau D, Rotramel N, Thies WG (2008) Long-term effects of stump removal to control root rot on forest soil bulk density, soil carbon and nitrogen content. For Ecol Manage 255:720–727

    Article  Google Scholar 

  • Zhang W, Parker K, Luo Y, Wan S, Wallace LL (2005) Soil microbial responses to experimental warming and clipping in a tall grass prairie. Glob Change Biol 11:266–277

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Ken Old, formerly of CSIRO, for providing us with access to unpublished work (Old and Stone 2005), and for permission to reproduce parts of it in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. John Raison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raison, R.J., Khanna, P.K. (2011). Possible Impacts of Climate Change on Forest Soil Health. In: Singh, B., Cowie, A., Chan, K. (eds) Soil Health and Climate Change. Soil Biology, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20256-8_12

Download citation

Publish with us

Policies and ethics