Skip to main content

Identifying Geographical Processes from Time-Stamped Data

  • Conference paper
GeoSpatial Semantics (GeoS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6631))

Included in the following conference series:

Abstract

Humans tend to interpret a temporal series of geographical spatial data in terms of geographical processes. They also often ascribe certain properties to processes (e.g. a process may be said to accelerate). Given a spatial region of observation, distinct properties may be observed in different subregions and at different times, which causes difficulties for humans to identify them. The conceptualisation of geographical features and their correlation with geographical phenomena may provide a human like approach to analyse large spatio-temporal datasets. This paper presents a representational model and a reasoning mechanism to analyse evolving geographical features and their relationship to geographical processes. The proposed approach comprises methods of relating occurrences of geographical events to geographical processes which is said to proceed over time. We introduce an initial set of properties which can be associated with several geographical processes. We consider this as a first step towards a more general model for representing and reasoning about geographical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batty, M.: Geocomputation Using Cellular Automata. Geocomputation, 95–126 (2000)

    Google Scholar 

  2. Clarke, C.K., Brass, A.J., Riggan, J.P.: A Cellular Automaton Model of Wildfire Propagation and Extinction. Photogrammetric Engineering and Remote Sensing 60(11), 1355–1367 (1994)

    Google Scholar 

  3. Claramunt, C., Parent, C., Thériault, M.: Design patterns for spatiotemporal processes. Searching for Semantics: Data Mining, Reverse Engineering, 415–428 (1997)

    Google Scholar 

  4. Claramunt, C., Theriault, M.: Toward semantics for modelling spatio-temporal processes within GIS. In: Advances in GIS Research I, pp. 27–43 (1996)

    Google Scholar 

  5. Claramunt, C., Thriault, M., Parent, C.: A qualitative representation of evolving spatial entities in two-dimensional spaces. In: Innovations in GIS V, pp. 119–129 (1997)

    Google Scholar 

  6. Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.: RCC: a calculus for region-based qualitative spatial reasoning. GeoInformatica 1, 275–316 (1997)

    Article  Google Scholar 

  7. Crooks, A.: Exploring cities using agent-based models and GIS. In: Proceedings of the Agent 2006 Conference on Social Agents: Results and Prospects, Citeseer (2006)

    Google Scholar 

  8. Devaraju, A., Kuhn, W.: A Process-Centric ontological approach for integrating Geo-Sensor data. In: 6th International Conference on Formal Ontology in Information Systems, FOIS 2010 (2010)

    Google Scholar 

  9. Erol, K., Levy, R., Wentworth, J.: Application of agent technology to traffic simulation. In: Complex Systems, Intelligent Systems and Interfaces, Nimes, France (May 1998)

    Google Scholar 

  10. Frank, A.U., Campari, I., Formentini, U. (eds.): GIS 1992. LNCS, vol. 639. Springer, Heidelberg (1992)

    Google Scholar 

  11. Galton, A.: Desiderata for a spatio-temporal geo-ontology. Spatial Information Theory, 1–12 (2003)

    Google Scholar 

  12. Galton, A.: Experience and history: Processes and their relation to events. Journal of Logic and Computation 18(3), 323–340 (2007)

    Article  MathSciNet  Google Scholar 

  13. Galton, A.: A formal theory of objects and fields. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 458–473. Springer, Heidelberg (2001)

    Google Scholar 

  14. Galton, A.: Spatial and temporal knowledge representation. Earth Science Informatics 2(3), 169–187 (2009)

    Article  Google Scholar 

  15. Grenon, P., Smith, B.: SNAP and SPAN: towards dynamic spatial ontology. Spatial Cognition & Computation, 69–104 (2004)

    Google Scholar 

  16. Hornsby, K., Egenhofer, M.J.: Identity-based change: A foundation for spatio-temporal knowledge representation. International Journal of Geographical Information Science 14, 207–224 (2000)

    Article  Google Scholar 

  17. Ohgai, A., Gohnai, Y., Watanabe, K.: Cellular automata modeling of fire spread in built-up areas–A tool to aid community-based planning for disaster mitigation. Computers, Environment and Urban Systems 31(4), 441–460 (2007)

    Article  Google Scholar 

  18. Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J., Deadman, P.: Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers 93(2), 314–337 (2003)

    Article  Google Scholar 

  19. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: KR 1992, pp. 165–176 (1992)

    Google Scholar 

  20. Shimabukuro, Y., Duarte, V., Anderson, L., Valeriano, D., Arai, E., de Freitas, R., Rudorff, B., Moreira, M.: Near real time detection of deforestation in the Brazilian Amazon using MODIS imagery. Revista Ambiente & Água-An Interdisciplinary Journal of Applied Science 1(1) (2006)

    Google Scholar 

  21. Wainwright, J.: Can modelling enable us to understand the rôle of humans in landscape evolution?. Geoforum 39(2), 659–674 (2008)

    Article  Google Scholar 

  22. Walter, V.: Object-based classification of remote sensing data for change detection. ISPRS Journal of Photogrammetry and Remote Sensing 58(3-4), 225–238 (2004)

    Article  Google Scholar 

  23. White, R., Engelen, G.: Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment and Planning A 25(8), 1175–1199 (1993)

    Article  Google Scholar 

  24. Wolter, F., Zakharyaschev, M.: Spatio-temporal representation and reasoning based on rcc-8. In: Proceedings of the Seventh Conference on Principles of Knowledge Representation and Reasoning, KR 2000, pp. 3–14. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  25. Worboys, M., Hornsby, K.: From objects to events: GEM, the geospatial event model. In: Egenhofer, M.J., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 327–343. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Campelo, C.E.C., Bennett, B., Dimitrova, V. (2011). Identifying Geographical Processes from Time-Stamped Data. In: Claramunt, C., Levashkin, S., Bertolotto, M. (eds) GeoSpatial Semantics. GeoS 2011. Lecture Notes in Computer Science, vol 6631. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20630-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20630-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20629-0

  • Online ISBN: 978-3-642-20630-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics