Skip to main content

Entwicklung und Kontrolle des Verhaltens

  • Chapter
Verhaltensbiologie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 6752 Accesses

Zusammenfassung

Eine der vier grundsätzlichen, von Tinbergen (1963) aufgeworfenen Fragen über das Verhalten betrifft dessen Entwicklung im Laufe der Ontogenese. Untersuchungen der frühen Entwicklung des Verhaltens haben eine lange Geschichte, die bis in die klassische Ethologie zurück reicht. Während der frühen Individualentwicklung beginnen frisch geschlüpfte oder neugeborene Jungtiere durch ihr Verhalten mit ihrer belebten und unbelebten Umwelt zu interagieren. Vom ersten Moment an werden die Fähigkeiten, ihre grundlegenden Körperfunktionen zu stabilisieren, für das energetisch kostspielige Wachstum ausreichend Nahrung zu gewinnen sowie nicht gefressen zu werden, von natürlicher Selektion bewertet. Verhaltensweisen, die diese Fähigkeiten beeinflussen, sollten daher weitestgehend abrufbereit vorliegen, also einer genetischen Kontrolle unterliegen (→ Kapitel 11.1). Andere Verhaltensweisen sind artspezifisch, treten nur bei einem Geschlecht oder nur zu bestimmten Phasen der Individualentwicklung auf, was auf einen genetischen Einfluss hindeutet. Künstliche Selektion durch den Menschen kann ebenfalls Hinweise auf die genetische Kontrolle von Verhaltensweisen liefern. Bei der Entwicklung und Integration eines Organismus spielen Hormone eine wichtige integrative Rolle (→ Kapitel 11.2). Zudem haben Hormone auch eine zentrale Rolle bei der Anpassung an sich verändernde reproduktive, ökologische und soziale Bedingungen. Die Entwicklung eines Individuums sollte also über seine komplette Lebensspanne betrachtet werden und nicht nur auf die frühe Individualentwicklung fokussieren. Mit zunehmendem Alter nimmt auch die individuelle Erfahrung zu, so dass es im Laufe der Individualentwicklung zu Modifikation und Anpassung des Verhaltens durch verschiedene Lernprozesse kommt (→ Kapitel 11.3). Außerdem haben neuere Studien gezeigt, dass durch Umwelteinflüsse erworbene Modifikationen des Erbguts über die gesamte Lebensspanne wirken und sogar an die eigenen Nachkommen weitergegeben werden kann. All diese Prozesse werfen grundlegende Fragen über die Kontrolle des Verhaltens auf, die zunehmend interdisziplinär von Genetikern, Neurobiologen und Verhaltensforschern bearbeitet werden (Robinson 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Astheimer LB, Buttemer WA, Wingfield JC (2000) Corticosterone treatment has no effect on reproductive hormones or aggressive behavior in free-living male tree sparrows, Spizella arborea. Horm Behav 37:31–39

    Article  PubMed  CAS  Google Scholar 

  • Bates LA, Byrne RW (2010) Imitation: what animal imitation tells us about animal cognition. Cogn Sci 1:685–695

    Google Scholar 

  • Bateson P (2005) The return of the whole organism. J Biosci 30:31–39

    Article  PubMed  Google Scholar 

  • Bell AM (2007) Future directions in behavioural syndromes research. Proc R Soc Lond B 274:755–761

    Article  Google Scholar 

  • Bell AM, Robinson GE (2011) Behavior and the dynamic genome. Science 332:1161–1162

    Article  PubMed  CAS  Google Scholar 

  • Bell AM, Hankison SJ, Laskowski KL (2009) The repeatability of behaviour: a meta-analysis. Anim Behav 77:771–783

    Article  Google Scholar 

  • Belote JM, Baker BS (1987) Sexual behavior: its genetic control during development and adulthood in Drosophila melanogaster. Proc Natl Acad Sci USA 84:8026–8030

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar Y, Robichon A, Sokolowski MB, Robinson GE (2002) Influence of gene action across different time scales on behavior. Science 296:741–744

    Article  PubMed  CAS  Google Scholar 

  • Bergmüller R (2010) Animal personality and behavioural syndromes. In: Kappeler PM (ed) Animal Behaviour: Evolution and Mechanisms. Springer, Heidelberg, pp 587–621

    Chapter  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  PubMed  CAS  Google Scholar 

  • Boesch C (1991) Teaching among wild chimpanzees. Anim Behav 41:530–532

    Article  Google Scholar 

  • Bolhius JJ, Cook S, Horn G (2000) Getting better all the time: improving preference scores reflect increases in the strength of filial imprinting. Anim Behav 59:1153–1159

    Article  Google Scholar 

  • Brembs B, Lorenzetti FD, Reyes FD, Baxter DA, Byrne JH (2002) Operant reward learning in Aplysia: neuronal correlates and mechanisms. Science 296:1706–1709

    Article  PubMed  CAS  Google Scholar 

  • Caro TM (1994) Cheetahs of the Serengeti Plains: Group Living in an Asocial Species. University of Chicago Press, Chicago

    Google Scholar 

  • Champagne FA, Curley JP (2009) Epigenetic mechanisms mediating the longterm effects of maternal care on development. Neurosci Biobehav Rev 33:593–600

    Article  PubMed  Google Scholar 

  • Champagne FA, Francis DD, Mar A, Meaney MJ (2003) Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol Behav 79:359–371

    Article  PubMed  CAS  Google Scholar 

  • Clark MM, Galef BG (2000) Why some male Mongolian gerbils may help at the nest: testosterone, asexuality and alloparenting. Anim Behav 59:801–806

    Article  PubMed  Google Scholar 

  • Clark MM, Malenfant S-A, Winter SA, Galef BG Jr (1990) Fetal uterine position affects copulation and scent marking by adult male gerbils. Physiol Behav 47:301–305

    Article  PubMed  CAS  Google Scholar 

  • Crews D, Gore AC, Hsu TS, Dangleben NL, Spinetta M, Schallert T, Anway MD, Skinner MK (2007) Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci USA 104:5942–5946

    Article  PubMed  CAS  Google Scholar 

  • Dingemanse NJ, Wolf M (2010) Recent models for adaptive personality differences: a review. Philos Trans R Soc Lond B 365:3947–3958

    Article  Google Scholar 

  • Dingemanse NJ, Both C, Drent PJ, Tinbergen J (2004) Fitness consequences of avian personalities in a fluctuating environment. Proc R Soc Lond B 271:847–852

    Article  Google Scholar 

  • Dittman AH, Quinn TP (1996) Homing in pacific salmon: mechanism and ecological basis. J Exp Biol 199:83–91

    PubMed  Google Scholar 

  • Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322:900–904

    Article  PubMed  CAS  Google Scholar 

  • Dong S, Clayton DF (2008) Partial dissociation of molecular and behavioral measures of song habituation in adult zebra finches. Genes Brain Behav 7:802–809

    Article  PubMed  CAS  Google Scholar 

  • Ferguson JN, Young LJ, Insel TR (2002) The neuroendocrine basis of social recognition. Front Neuroendocrinol 23:200–224

    Article  PubMed  CAS  Google Scholar 

  • Fidler AE, van Oers K, Drent PJ, Kuhn S, Mueller JC, Kempenaers B (2007) Drd4 gene polymorphisms are associated with personality variation in a passerine bird. Proc R Soc Lond B 274:1685–1691

    Article  CAS  Google Scholar 

  • Fitzpatrick MJ, Ben-Shahar Y, Smid HM, Vet LEM, Robinson GE, Sokolowski MB (2005) Candidate genes for behavioural ecology. Trends Ecol Evol 20:96–104

    Article  PubMed  Google Scholar 

  • Fitzpatrick MJ, Feder E, Rowe L, Sokolowski MB (2007) Maintaining a behaviour polymorphism by frequency-dependent selection on a single gene. Nature 447:210–212

    Article  PubMed  CAS  Google Scholar 

  • Gardner TJ, Naef F, Nottebohm F (2005) Freedom and rules: the acquisition and reprogramming of a bird’s learned song. Science 308:1046–1049

    Article  PubMed  CAS  Google Scholar 

  • Gesquiere LR, Learn NH, Simao MCM, Onyango PO, Alberts SC, Altmann J (2011) Life at the top: rank and stress in wild male baboons. Science 333:357–360

    Article  PubMed  CAS  Google Scholar 

  • Gosling SD, John OP (1999) Personality dimensions in nonhuman animals: a cross-species review. Curr Dir Psychol Sci 8:69–75

    Article  Google Scholar 

  • Goymann W, Hofer H (2010) Mating systems, social behavior amd hormones. In: Kappeler PM (ed) Animal Behaviour: Evolution and Mechanisms. Springer, Heidelberg, pp 465–501

    Chapter  Google Scholar 

  • Gräff J, Mansuy IM (2008) Epigenetic codes in cognition and behaviour. Behav Brain Res 192:70–87

    Article  PubMed  Google Scholar 

  • Grant PR, Grant BR (1997) Hybridization, sexual imprinting, and mate choice. Am Nat 149:1–28

    Article  Google Scholar 

  • Hammer M, Menzel R (1995) Learning and memory in the honeybee. J Neurosci 15:1617–1630

    PubMed  CAS  Google Scholar 

  • Heyes CM (2001) Causes and consequences of imitation. Trends Cogn Sci 5:253–261

    Article  PubMed  Google Scholar 

  • Immelmann K (1972) Sexual and other long-term aspects of imprinting in birds and other species. Adv Stud Behav 4:147–174

    Article  Google Scholar 

  • Insel TR (2010) The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65:768–779

    Article  PubMed  CAS  Google Scholar 

  • Irwin DE, Price T (1999) Sexual imprinting, learning and speciation. Heredity 82:347–354

    Article  PubMed  Google Scholar 

  • Jaeggi AV, Dunkel LP, Van Noordwijk MA, Wich SA, Sura AAL, van Schaik CP (2010) Social learning of diet and foraging skills by wild immature Bornean orangutans: implications for culture. Am J Primatol 72:62–71

    Article  PubMed  Google Scholar 

  • Janik VM, Slater PJB (2000) The different roles of social learning in vocal communication. Anim Behav 60:1–11

    Article  PubMed  Google Scholar 

  • Jensen P, Buitenhuis B, Kjaer J, Zanella A, Mormede P, Pizzari T (2008) Genetics and genomics of animal behaviour and welfare – challenges and possibilities. Appl Anim Behav Sci 113:383–403 Kappeler PM, Kraus C (2010) Levels and mechanisms of behavioural variability. In: Animal Behaviour: Evolution and Mechanisms. Springer, Heidelberg, pp 655–684

    Google Scholar 

  • Klopfer PH, Adams DK, Klopfer MS (1964) Maternal ‘imprinting’ in goats. Proc Natl Acad Sci USA 52:911–914

    Article  PubMed  CAS  Google Scholar 

  • Kurvers RHJM, Prins HHT, van Wieren SE, van Oers K, Nolet BA, Ydenberg RC (2010) The effect of personality on social foraging: shy barnacle geese scrounge more. Proc R Soc Lond B 277:601–608

    Article  Google Scholar 

  • Manoli DS, Foss M, Villella A, Taylor BJ, Hall JC, Baker BS (2005) Malespecific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436:395–400

    PubMed  CAS  Google Scholar 

  • Marler P (1997) Three models of song learning: evidence from behavior. J Neurobiol 33:501–516

    Article  PubMed  CAS  Google Scholar 

  • Meaney M (2001) Nature, nurture, and the disunity of knowledge. Ann NY Acad Sci 935:1325–1362

    Google Scholar 

  • Mineka S, Davidson M, Cook M, Keir R (1984) Observational conditioning of snake fear in rhesus monkeys. J Abnorm Psychol 93:355–372

    Article  PubMed  CAS  Google Scholar 

  • Oliveira RF (2009) Social behavior in context: hormonal modulation of behavioral plasticity and social competence. Integr Comp Biol 49:423–440

    Article  PubMed  Google Scholar 

  • Oliveira RF, Carneiro LA, Canário AVM (2005) No hormonal response in tied fights. Nature 437:207

    Article  PubMed  CAS  Google Scholar 

  • Osborne KA, Robichon A, Burgess E, Butland S, Shaw RA, Coulthard A, Pereira HS, Greenspan RJ, Sokolowski MB (1997) Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277:834–838

    Article  PubMed  CAS  Google Scholar 

  • Palme R (2005) Measuring fecal steroids: guidelines for practical application. Ann NY Acad Sci 1046:75–80

    Article  PubMed  CAS  Google Scholar 

  • Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, Malek TB, Johnson GS, DeFrance HB, Ostrander EA, Kriuglyak L (2004) Genetic structure of the purebred domestic dog. Science 304:1160–1164

    Article  PubMed  CAS  Google Scholar 

  • Pulido F, Berthold P, Mohr G, Querner U (2001) Heritability of the timing of autumn migration in a natural bird population. Proc R Soc Lond B 268:953–959

    Article  CAS  Google Scholar 

  • Punzo F (2002) Food imprinting and subsequent prey preference in the lynx spider, Oxyopes salticus (Araneae: Oxyopidae). Behav Process 58:177–181

    Article  Google Scholar 

  • Réale D, Garant D, Humphries MM, Bergeron P, Careau V, Montiglio P-O (2010) Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos Trans R Soc Lond B 365:4051–4063

    Article  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation – revisiting soft inheritance. Nat Rev Genet 7:395–401

    Article  PubMed  CAS  Google Scholar 

  • Robinson GE (1999) Integrative animal behaviour and sociogenomics. Trends Ecol Evol 14:202–205

    Article  PubMed  Google Scholar 

  • Robinson GE, Fernald RD, Clayton DF (2008) Genes and social behavior. Science 322:896–900

    Article  PubMed  CAS  Google Scholar 

  • Ryan BC, Vandenbergh JG (2002) Intrauterine position effects. Neurosci Biobehav Rev 26:665–678

    Article  PubMed  Google Scholar 

  • Sachser N (1998) Of domestic and wild guinea pigs: studies in sociophysiology, domestication, and social evolution. Naturwissenschaften 85:307–317

    Article  PubMed  CAS  Google Scholar 

  • Sachser N, Kaiser S (2010) The social modulation of behavioural development. In: Kappeler PM (ed) Animal Behaviour: Evolution and Mechanisms. Springer, Heidelberg, pp 505–536

    Chapter  Google Scholar 

  • Schwabl H (1993) Yolk is a source of maternal testosterone for developing birds. Proc Natl Acad Sci USA 90:11446–11450

    Article  PubMed  CAS  Google Scholar 

  • Sherwin CM, Heyes CM, Nicol CJ (2002) Social learning influences the preferences of domestic hens for novel food. Anim Behav 63:933–942

    Article  Google Scholar 

  • Shettleworth SJ (1998) Cognition, Evolution, and Behavior. Oxford University Press, New York

    Google Scholar 

  • Sih A, Bell A, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378

    Article  PubMed  Google Scholar 

  • Slagsvold T, Hansen BT, Johannessen LE, Lifjeld JT (2002) Mate choice and imprinting in birds studied by cross-fostering in the wild. Proc R Soc Lond B 269:1449–1455

    Article  Google Scholar 

  • Smith BR, Blumstein DT (2008) Fitness consequences of personality: a metaanalysis. Behav Ecol 19:448–455

    Article  Google Scholar 

  • Sokolowski MB (2001) Drosophila: genetics meets behaviour. Nat Rev Genet 2:879–890

    Article  PubMed  CAS  Google Scholar 

  • Sokolowski MB (2010) Social interactions in “simple” model systems. Neuron 65:780–794

    Article  PubMed  CAS  Google Scholar 

  • Sokolowski M, Levine J (2010) Nature-nurture interactions. In: Szekely T, Moore A, Komdeur J (eds) Social Behavior: Genes, Ecology and Evolution. Cambridge University Press, Cambridge, pp 11–25

    Google Scholar 

  • Strasser R, Schwabl H (2004) Yolk testosterone organizes behavior and male plumage coloration in house sparrows (Passer domesticus). Behav Ecol Sociobiol 56:491–497

    Article  Google Scholar 

  • Taborsky M, Brockmann HJ (2010) Alternative reproductive tactics and life history phenotypes. In: Kappeler PM (ed) Animal Behaviour: Evolution and Mechanisms. Springer, Heidelberg, pp 537–586

    Chapter  Google Scholar 

  • Tchernichovski O, Mitra PP, Lints T, Nottebohm F (2001) Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291:2564–2569

    Article  PubMed  CAS  Google Scholar 

  • Teuschl Y, Taborsky B, Taborsky M (1998) How do cuckoos find their hosts? The role of habitat imprinting. Anim Behav 56:1425–1433

    Article  PubMed  Google Scholar 

  • Tinbergen N (1963) On the aims and methods of ethology. Z Tierpsychol 20:410–433

    Article  Google Scholar 

  • Trut LN (1999) Early canid domestication: the farm-fox experiment. Am Sci 87:160–169

    Google Scholar 

  • van Oers K, de Jong G, van Noordwijk A, Kempenaers B, Drent P (2005) Contribution of genetics to the study of animal personalities: a review of case studies. Behaviour 142:1185–1206

    Article  Google Scholar 

  • van Oers K, Drent PJ, Dingemanse NJ, Kempenaers B (2008) Personality is associated with extrapair paternity in great tits, Parus major. Anim Behav 76:555–563

    Article  Google Scholar 

  • van Schaik CP (2010) Social learning and culture in animals. In: Kappeler PM (ed) Animal Behavior: Evolution and Mechanisms. Springer, Heidelberg, pp 623–653

    Chapter  Google Scholar 

  • Wahlsten D, Bachmanov A, Finn DA, Crabbe JC (2006) Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proc Natl Acad Sci USA 103:16364–16369

    Article  PubMed  CAS  Google Scholar 

  • Weaver I, Cervoni N, Champagne F, D'Alessio A, Sharma S, Seckl J, Dymov S, Szyf M, Meaney M (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    Article  PubMed  CAS  Google Scholar 

  • Wilson DS (1998) Adaptive individual differences within single populations. Philos Trans R Soc Lond B 353:199–205

    Article  Google Scholar 

  • Wolf M, van Doorn GS, Leimar O, Weissing FJ (2007) Life-history trade-offs favour the evolution of animal personalities. Nature 447:581–584

    Article  PubMed  CAS  Google Scholar 

  • Wolf M, van Doorn GS, Weissing FJ (2008) Evolutionary emergence of responsive and unresponsive personalities. Proc Natl Acad Sci USA 105:15825–15830

    Article  PubMed  CAS  Google Scholar 

  • Young LJ, Nilsen R, Waymire KG, MacGregor GR, Insel TR (1999) Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 400:766–768

    Article  PubMed  CAS  Google Scholar 

  • Zenuto RR, Fanjul MS (2002) Olfactory discrimination of individual scents in the subterranean rodent Ctenomys talarum (tuco-tuco). Ethology 108:629–641

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kappeler, P. (2012). Entwicklung und Kontrolle des Verhaltens. In: Verhaltensbiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20653-5_11

Download citation

Publish with us

Policies and ethics