Skip to main content

Finite Groups and Complexity Theory: From Leningrad to Saint Petersburg via Las Vegas

  • Conference paper
Computer Science – Theory and Applications (CSR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6651))

Included in the following conference series:

  • 828 Accesses

Abstract

Finite groups have affected complexity theory and complexity theory has had an impact on computational group theory. This paper is a personal account of the author’s journey through the evolution of some of these interconnections, culminating in recent definitive results on the matrix group membership problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S., Kuperberg, G.: Quantum versus classical proofs and advice. Theory of Computing 3, 129–157 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aaronson, S., Le Gall, F., Russell, A., Tani, S.: The one-way communication complexity of group membership. arXiv:0902.3175v2

    Google Scholar 

  3. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. of Algorithms 7, 567–583 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Lubotzky, A., Wigderson, A.: Semi-direct product in groups and zig-zag product in graphs: connections and applications. In: Proc. 42nd FOCS, pp. 630–637. IEEE Computer Soc., Los Alamitos (2001)

    Google Scholar 

  5. Altseimer, C., Borovik, A.V.: Probabilistic recognition of orthogonal and symplectic groups. In: Groups and Computation III, deGruyter, pp. 1–20 (2001)

    Google Scholar 

  6. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof Verification and the Hardness of Approximation Problems. J. ACM 45(3), 501–555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Babai, L.: On the isomorphism problem. Manuscript, 10 pages (1977)

    Google Scholar 

  8. Babai, L.: Monte Carlo algorithms in graph isomorphism testing. Université de Montréal Tech. Rep., DMS 79-10, 42 pages (1979)

    Google Scholar 

  9. Babai, L.: Trading group theory for randomness. In: Proc. 17th STOC, pp. 421–429. ACM, New York (1985)

    Google Scholar 

  10. Babai, L.: Random oracles separate PSPACE from the polynomial-time hierarchy. Information Processing Letters 26, 51–53 (1987/1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Babai, L.: Local expansion of vertex-transitive graphs and random generation in finite groups. In: Proc. 23rd STOC, pp. 164–174. ACM, New York (1991)

    Google Scholar 

  12. Babai, L.: Bounded round interactive proofs in finite groups. SIAM J. Discr. Math. 5, 88–111 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Babai, L.: The forbidden sidetrip. In: Calude, C.S. (ed.) People & Ideas in Theoretical Computer Science, pp. 1–31. Springer, Heidelberg (1998)

    Google Scholar 

  14. Babai, L., Banerjee, A., Kulkarni, R., Naik, V.: Evasiveness and the distribution of prime numbers. In: Proc. 27th Ann. Symp. on Theoretical Aspects of Comp. Sci (STACS 2010), pp. 71–82. Schloss Dagstuhl Online Publ. (2010)

    Google Scholar 

  15. Babai, L., Beals, R.: A polynomial-time theory of black-box groups I. In: Groups St Andrews 1997 in Bath, I. London Math. Soc. Lect. Notes. vol. 260, pp. 30–64 (1999)

    Google Scholar 

  16. Babai, L., Beals, R., Seress, Á.: Polynomial-time theory of matrix groups. In: Proc. 41st ACM STOC, pp. 55–64 (2009)

    Google Scholar 

  17. Babai, L., Cooperman, G., Finkelstein, L., Luks, E.M., Seress, Á.: Fast Monte Carlo algorithms for permutation groups. J. Computer and System Sci. 50, 296–308 (1995); (Prelim. 23rd STOC, 1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Babai, L., Cooperman, G., Finkelstein, L., Seress, Á.: Nearly linear time algorithms for permutation groups with a small base. In: Proc. ISSAC 1991 Internat. Symp. on Symbolic and Algebraic Computation, Bonn, pp. 200–209 (1991)

    Google Scholar 

  19. Babai, L., Fortnow, L., Lund, C.: Nondeterministic exponential time has two-prover interactive protocols. Computational Complexity 1, 3–40 (1991); Prelim. version FOCS 1990, pp. 26–34 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Babai, L., Goodman, A.J., Kantor, W.M., Luks, E.M., Pálfy, P.P.: Short presentations for finite groups. J. Algebra 194, 79–112 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Babai, L., Grigor’ev, D.Y., Mount, D.M.: Isomorphism of graphs with bounded eigenvalue multiplicity. In: 14th ACM STOC, pp. 310–324 (1982)

    Google Scholar 

  22. Babai, L., Kantor, W.M., Pálfy, P.P., Seress, Á.: Black-box recognition of finite simple groups of Lie type by statistics of element orders. J. Group Theory 5, 383–401 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Babai, L., Luks, E.M., Seress, Á.: Permutation groups in NC. In: Proc. 19th ACM STOC, pp. 409–420 (1987)

    Google Scholar 

  24. Babai, L., Moran, S.: Arthur-Merlin games: A randomized proof system and a hierarchy of complexity classes. J. Computer and Sys. Sci. 36, 254–276 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Babai, L., Nikolov, N., Pyber, L.: Product growth and mixing in finite groups. In: Proc. 19th Ann. Symp. on Discrete Algorithms (SODA 2008), pp. 248–257. ACM-SIAM (2008)

    Google Scholar 

  26. Babai, L., Pálfy, P.P., Saxl, J.: On the number of p-regular elements in simple groups. LMS J. Computation and Math. 12, 82–119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Babai, L., Shalev, A.: Recognizing simplicity of black-box groups and the frequency of p-singular elements in affine groups. In: Groups and Comp. III, deGruyer, pp. 39–62 (2001)

    Google Scholar 

  28. Babai, L., Szegedy, M.: Local expansion of symmetrical graphs. Combinatorics, Probability, and Computing 1, 1–11 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Babai, L., Szemerédi, E.: On the complexity of matrix group problems I. In: Proc. 25th FOCS, pp. 229–240. IEEE Comp. Soc., Los Alamitos (1984)

    Google Scholar 

  30. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comp. Sys. Sci. 38, 150–164 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Beals, R.: Towards polynomial time algorithms for matrix groups. In: Groups and Computation II, DIMACS, pp. 31–54 (1997)

    Google Scholar 

  32. Bennett, C.H., Gill, J.: Relative to a random oracle A, P A ≠ NP A ≠ coNP A with probability 1. SIAM J. Comp. 10, 96–113 (1981)

    Article  MATH  Google Scholar 

  33. Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to Numerical Problems. J. Comput. Syst. Sci. 47(3), 549–595 (1993) (Prelim. 22nd STOC, 1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bourgain, J., Gamburd, A.: Uniform expansion bound for Cayley graphs of \({SL}_2(\mathbb{F}_p)\). Ann. Math. 167, 625–642 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bray, J.: An improved method for generating the centralizer of an involution. Arch. Math. 74, 241–245 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Braverman, M.: Poly-logarithmic independence fools AC0 circuits. Conf. Computational Complexity (2009) (to appear in the J. ACM)

    Google Scholar 

  37. Breuillard, E., Green, B., Tao, T.: Approximate subgroups of linear groups. arXiv:1005.1881v1

    Google Scholar 

  38. Brooksbank, P.A., Kantor, W.M.: On constructive recognition of a black box PSL(d,q). In: Groups and Computation III, pp. 95–111. deGruyter (2001)

    Google Scholar 

  39. Celler, F., Leedham-Green, C.R., Murray, S., Niemeyer, A.C., O’Brien, E.A.: Generating random elements of a finite group. Comm. Alg. 23, 4931–4948 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identification. Combinatorica 12, 389–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Conder, M., Leedham-Green, C.R., O’Brien, E.A.: Constructive recognition of PSL(2,q). Trans. Amer. Math. Soc. 358, 1203–1221 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: ATLAS of Finite Groups. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  43. Cooperman, G.: Towards a practical, theoretically sound algorithm for random generation in finite groups. arXiv:math/0205203

    Google Scholar 

  44. Dixon, J.D.: Generating random elements in finite groups. Electronic J. Combinatorics, 15/1:R94 (2008)

    Google Scholar 

  45. Furst, M.L., Hopcroft, J., Luks, E.M.: Polynomial-time algorithms for permutation groups. In: Proc. 21st FOCS, pp. 36–41. IEEE C.S, Los Alamitos (1980)

    Google Scholar 

  46. Gamburd, A., Pak, I.: Expansion of product replacement graphs. Combinatorica 26, 411–429 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. The GAP Group: GAP – Groups, Algorithms, and Programming. Version 4.4. Aachen–St. Andrews (2005), http://www.gap-system.org

  48. Gavinsky, D., Sherstov, A.: A separation of NP and coNP in multiparty communication complexity. Theory of Computing 6, 227–245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Goldwasser, O., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Proc. 17th STOC, pp. 291–304 (1985)

    Google Scholar 

  50. Gowers, W.T.: Quasirandom groups. Combinatorics, Probability and Computing 17(3), 363–387 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Helfgott, H.A.: Growth and generation in SL 2(ℤ/pℤ). Ann. Math. 167, 601–623 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Holmes, P.E., Linton, S.A., O’Brien, E.A., Ryba, A.J.E.A., Wilson, R.A.: Constructive membership in black-box groups. J. Group Theory 11, 747–763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Hopcroft, J.: Recent directions in algorithmic research. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 123–134. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  54. Hulpke, A., Seress, Á.: Short presentations for three-dimensional unitary groups. J. Algebra 245, 719–729 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. Jerrum, M., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a uniform distribution. Theor. Comp. Sci. 43, 169–188 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kahn, J., Saks, M., Sturtevant, D.: A topological approach to evasiveness. Combinatorica 4, 297–306 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  57. Kantor, W.M.: Sylow’s theorem in polynomial time. J. Computer Sys. Sci. 30, 359–394 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kantor, W.M., Seress, Á.: Black box classical groups. Mem. AMS 149, 708:viii+168 (2001)

    Google Scholar 

  59. Knuth, D.E.: Notes on efficient representation of perm groups. Combinatorica 11, 33–43 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  60. Lovász, L.: Random Walk on Graphs: A Survey. In: Combinatorics, Paul Erdős is 80, Vol. 2. Bolyai Society Mathematical Studies 2, Budapest, pp. 353–398 (1995)

    Google Scholar 

  61. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8, 261–278 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  62. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comp. Syst. Sci. 25, 42–65 (1982) (Preliminary version in FOCS 1980)

    Article  MathSciNet  MATH  Google Scholar 

  63. Luks, E.M.: Computing the composition factors of a permutation group in polynomial time. Combinatorica 7, 87–99 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  64. Luks, E.M.: Computing in solvable matrix groups. In: Proc. 33rd FOCS, pp. 111–120 (1992)

    Google Scholar 

  65. Luks, E.M.: Permutation groups and polynomial-time computation. In: Groups and Computation, DIMACS, pp. 139–175 (1993)

    Google Scholar 

  66. Margulis, G.A.: Explicit constructions of graphs without short cycles and low density codes. Combinatorica 2, 71–78 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  67. Margulis, G.A.: Explicit group theoretic construction of combinatorial schemes and their application for the construction of expanders and concentrators. Probl. Info. Transmission 24, 39–46 (1988)

    MathSciNet  MATH  Google Scholar 

  68. Mathon, R.: A note on the graph isomorphism counting problem. Inf. Proc. Letters 8, 131–132 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  69. Nisan, N., Linial, N.: Approximate inclusion-exclusion. Combinatorica 10(4), 349–365 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  70. Nisan, N.: Pseudorandom generators for space-bounded computation. Combinatorica 12(4), 449–461 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  71. Parker, C.W., Wilson, R.A.: Recognising simplicity of black-box groups (2004) (manuscript)

    Google Scholar 

  72. Pyber, L., Szabó, E.: Growth in finite simple groups of Lie type. arXiv:1005.1858v1

    Google Scholar 

  73. Reingold, O.: Undirected connectivity in logspace. J. ACM 55(4), 1–24 (2008)

    Article  MathSciNet  Google Scholar 

  74. Reingold, O., Vadhan, S., Wigderson, A.: Entropy waves, the zig-zag graph product, and new constant-degree expanders. Ann. of Math. 155(1), 157–187 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  75. Rotman, J.: An Introduction to the Theory of Groups. Springer, Heidelberg (1994)

    Google Scholar 

  76. Seress, Á.: Permutation Group Algorithms. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  77. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Computing 26, 1484–1509 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  78. Sims, C.C.: Computational methods in the study of permutation groups. In: Computational problems in abstract algebra (Oxford, 1967), pp. 169–183. Pergamon Press, New York (1970)

    Chapter  Google Scholar 

  79. Sims, C.C.: Computation with permutation groups. In: Proc. Second ACM Symp. on Symbolic and Algebraic Manipulation, pp. 23–28. ACM, New York (1971)

    Chapter  Google Scholar 

  80. Suzuki, M.: On a class of doubly transitive groups. Ann. Math. 75, 105–145 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  81. Žuk, A.: On an isoperimetric inequality for infinite finitely generated groups. Topology 39, 947–956 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Babai, L. (2011). Finite Groups and Complexity Theory: From Leningrad to Saint Petersburg via Las Vegas. In: Kulikov, A., Vereshchagin, N. (eds) Computer Science – Theory and Applications. CSR 2011. Lecture Notes in Computer Science, vol 6651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20712-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20712-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20711-2

  • Online ISBN: 978-3-642-20712-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics