Skip to main content

Maximum Likelihood for Gaussians on Graphs

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6658))

Abstract

We show that extending the Gaussian distribution to the domain of graphs corresponds to truncated Gaussian distributions in Euclidean spaces. Based on this observation, we derive a maximum likelihood method for estimating the parameters of the Gaussian on graphs. In conjunction with a naive Bayes classifier, we applied the proposed approach to image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagdanov, A.D., Worring, M.: First order Gaussian graphs for efficient structure classification. Pattern Recognition 36, 1311–1324 (2003)

    Article  MATH  Google Scholar 

  2. Caruna, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: ICML (2006)

    Google Scholar 

  3. Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: NIPS (2006)

    Google Scholar 

  4. Eaton, M.L.: Group Invariance Applications in Statistics. In: Institute of Mathematical Statistics and American Statistical Association (1989)

    Google Scholar 

  5. Friedman, N., Koller, D.: Being bayesian about network structure. Machine Learning 50(1–2), 95–125 (2003)

    Article  MATH  Google Scholar 

  6. Gold, S., Rangarajan, A.: Graduated Assignment Algorithm for Graph Matching. IEEE Transactions on PAMI 18, 377–388 (1996)

    Article  Google Scholar 

  7. Hong, P., Huang, T.S.: Spatial pattern discovery by learning a probabilistic parametric model from multiple attributed relational graphs. Journal of Discrete Applied Mathematics (2004)

    Google Scholar 

  8. Jain, B., Obermayer, K.: Structure Spaces. Journal of Machine Learning Research 10, 2667–2714 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Jain, B.J., Obermayer, K.: Algorithms for the sample mean of graphs. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 351–359. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Jain, B., Srinivasan, S.D., Tissen, A., Obermayer, K.: Learning Graph Quantization. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 109–118. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Jain, B., Obermayer, K.: Extending Bron Kerbosch for the Maximum Weight Clique Problem. arXiv:1101.1266v1 (2011)

    Google Scholar 

  12. Jain, B., Obermayer, K.: Generalized Learning Graph Quantization. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 122–131. Springer, Heidelberg (2011)

    Google Scholar 

  13. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Solé-Ribalta, A., Serratosa, F.: A Structural and Semantic Probabilistic Model for Matching and Representing a Set of Graphs. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 164–173. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Riesen, K., Bunke, H.: Graph Classification by Means of Lipschitz Embedding. IEEE Transactions on Systems, Man, and Cybernetics 39(6), 1472–1483 (2009)

    Article  Google Scholar 

  16. Sanfeliu, A., Serratosa, F., Alquezar, R.: Second-Order Random Graphs for modelling sets of Attributed Graphs and their application to object learning and recognition. IJPRAI 18(3), 375–396 (2004)

    Google Scholar 

  17. Serratosa, F., Alquezar, R., Sanfeliu, A.: Function-Described Graphs for modelling objects represented by attributed graphs. Pattern Recognition 36(3), 781–798 (2003)

    Article  Google Scholar 

  18. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on PAMI 10(5), 695–703 (1988)

    Article  MATH  Google Scholar 

  19. Wong, A.K.C., Constant, J., You, M.L.: Random Graphs Syntactic and Structural Pattern Recognition. World Scientific, Singapore (1990)

    Google Scholar 

  20. Zhang, D.Q., Chang, S.F.: Learning Random Attributed Relational Graph for Part-based Object Detection. Columbia University ADVENT Technical Report, #212-2005-6 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jain, B.J., Obermayer, K. (2011). Maximum Likelihood for Gaussians on Graphs. In: Jiang, X., Ferrer, M., Torsello, A. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2011. Lecture Notes in Computer Science, vol 6658. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20844-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20844-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20843-0

  • Online ISBN: 978-3-642-20844-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics