Skip to main content

An Analysis of Bluetooth, Zigbee and Bluetooth Low Energy and Their Use in WBANs

  • Conference paper
Wireless Mobile Communication and Healthcare (MobiHealth 2010)

Abstract

A rapid development of services and technologies in the field of health care has been witnessed in the last few years. In this paper we present an analysis and an extensive comparison of radio communication technologies, namely Zigbee, Bluetooth and Bluetooth Low Energy, that have been proposed as likely candidates to provide wireless connectivity between body sensors and the health care system and consequently to lead the development and extended deployment of Wireless Body Area Networks. After the description of their characteristics, we concentrate on the security that these technologies offer since security is extremely important for the sensitive health care clinical information communicated and the protection of patients’ clinical information privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Istepanian, R.S.H., Jovanov, E., Zhang, Y.T.: M-Health: Beyond Seamless Mobility and Global Wireless Health-Care Connectivity. The Proceedings of the IEEE Transactions on Information Technology in Biomedicine, 405–414 (2004)

    Google Scholar 

  2. Jovanov, E., Milenkovic, A., Otto, C., de Groen, P.C.: A Wireless Body Area Network of Intelligent Motion Sensors for Computer Assisted Physical Rehabilitation. Journal of NeuroEngineering and Rehabilitation, 6–16 (2005)

    Google Scholar 

  3. http://www.bluetooth.com/English/Technology/Building/Pages/Specifcation.aspx

  4. http://www.bluetooth.com/English/Products/Pages/low_energy.aspx

  5. http://www.zigbee.org/Markets/ZigBeeSmartEnergy/Version20Documents.aspx

  6. Jovanov, E., Milenkovic, A., Otto, C., De Groen, P., Johnson, B., Warren, S., Taibi, G.: A WBAN System for Ambulatory Monitoring of Physical Activity and Health Status: Applications and Challenges. In: The Proceedings of 27th Annual International Conference of the Engineering in Medicine and Biology Society, Shanghai, pp. 3810–3813 (2005)

    Google Scholar 

  7. Jung, J.Y., Lee, J.W.: Improved WBAN Communication at Mental Healthcare System with the Personalized Bio Signal Devices. In: The Proceedings of 8th International Conference Advanced Communication Technology, Korea, pp. 812–816 (2006)

    Google Scholar 

  8. Lu, Y., Vaudenay, S.: Cryptanalysis of an E0-like Combiner with Memory. Journal of Cryptology 21, 430–457 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lu, Y., Vaudenay, S.: Cryptanalysis of Bluetooth Keystream Generator Two-Level E0. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 147–158. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Vaudenay, S.: On the need for Multipermutations: Cryptanalysis of MD4 and SAFER. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 286–297. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  11. Shihui, Z., Licheng, W., Yixian, Y.: A New Impossible Differential Attack on SAFER Ciphers Computers and Electrical Engineering. Elsevier Computers & Electrical Engineering 36(1), 180–189 (2010)

    Article  MATH  Google Scholar 

  12. IEEE Std. 802.15.4-2003, IEEE Standard for Information Technology Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks Specific Requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs). IEEE Press, New York (2003)

    Google Scholar 

  13. Eren, H.: Wireless Sensors and Instruments: Networks, Design, and Applications. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Georgakakis, E., Nikolidakis, S.A., Vergados, D.D., Douligeris, C. (2011). An Analysis of Bluetooth, Zigbee and Bluetooth Low Energy and Their Use in WBANs. In: Lin, J.C., Nikita, K.S. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20865-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20865-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20866-9

  • Online ISBN: 978-3-642-20865-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics