Skip to main content

Multiparty Simultaneous Quantum Secure Direct Communication Based on GHZ States and Mutual Authentication

  • Conference paper
Advances in Neural Networks – ISNN 2011 (ISNN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6677))

Included in the following conference series:

  • 2120 Accesses

Abstract

In the modern communication, multiparty communication plays a important role, and becomes more and more popular in the e-business and e-government society. In this paper, an efficient multiparty simultaneous quantum secure direct communication protocol is proposed by using GHZ states and dense coding, which is composed of two phases: the quantum state distribution process and the direct communication process. In order to prevent against the impersonators, a mutual identity authentication method is involved in both of the two processes. Analysis shows that it is secure against the eavesdropper’s attacks, the impersonator’s attacks, and some special Trent’s attacks (including the attack by using different initial states). Moreover, Comparing with the other analogous protocols, the authentication method is more simple and feasible, and the present protocol is more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and tossing. In: Proc. of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE Press, Los Alamitos (1984)

    Google Scholar 

  2. Ekert, K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MATH  Google Scholar 

  3. Bennett, H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MATH  Google Scholar 

  4. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  Google Scholar 

  5. Deng, F.G., Long, G.L., Zhou, H.Y.: An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 340, 43–50 (2005)

    Article  MATH  Google Scholar 

  6. Cleve, R., Gottesman, D., Lo, H.K.: How to Share a Quantum Secret. Phys. Rev. Lett. 83, 3 (1999)

    Article  Google Scholar 

  7. Lance, M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite Quantum State Sharing. Phys. Rev. Lett. 92, 17 (2004)

    Article  Google Scholar 

  8. Boström, K., Felbinger, T.: Deterministic Secure Direct Communication Using Entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  Google Scholar 

  9. Wójcik, A.: Eavesdropping on the ‘ping-pong’ quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  Google Scholar 

  10. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  Google Scholar 

  11. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253, 15–20 (2005)

    Article  Google Scholar 

  12. Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with single-photon two-qubit states. Acta Phys. Pol. A 101, 357–361 (2002)

    Article  MATH  Google Scholar 

  13. Yan, F.L., Zhang, X.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41, 75–78 (2004)

    Article  Google Scholar 

  14. Gao, T., Yan, F.L., Wang, Z.X.: Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J. Phys. A: Math. Gen. 38, 5761–5770 (2005)

    Article  MATH  Google Scholar 

  15. Li, X.H., Deng, F.G., Li, C.Y., Liang, Y.J., Zhou, P., Zhou, H.Y.: Deterministic Secure Quantum Communication Without Maximally Entangled States. J. Kerean Phys. Soc. 49, 1354–1360 (2006)

    Google Scholar 

  16. Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)

    Article  Google Scholar 

  17. Zhang, Z.J., Liu, J., Wang, D., Shi, S.H.: Comment on Quantum direct communication with authentication. Phys. Rev. A 75, 026301 (2007)

    Article  Google Scholar 

  18. Liu, W.J., Chen, H.W., Li, Z.Q., Liu, Z.H.: Efficient quantum secure direct communication with authentication. Chin. Phys. Lett. 25, 2354–2357 (2008)

    Article  Google Scholar 

  19. Qin, S.J., Wen, Q.Y., Meng, L.M., Zhu, F.C.: High Efficiency of Two Efficient QSDC with Authentication Is at the Cost of Their Security. Chin. Phys. Lett. 26, 020312 (2009)

    Article  Google Scholar 

  20. Yen, A., Horng, S.J., Goan, H.S., Kao, T.W., Chou, Y.H.: Quantum direct communication with mutual authentication. Quantum Information and Computation 9, 376–394 (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, W., Liu, J., Xiao, H., Ma, T., Zheng, Y. (2011). Multiparty Simultaneous Quantum Secure Direct Communication Based on GHZ States and Mutual Authentication. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds) Advances in Neural Networks – ISNN 2011. ISNN 2011. Lecture Notes in Computer Science, vol 6677. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21111-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21111-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21110-2

  • Online ISBN: 978-3-642-21111-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics