Skip to main content

Risk Estimation for Hierarchical Classifier

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6678))

Included in the following conference series:

  • 1777 Accesses

Abstract

We describe the Hierarchical Classifier (HC), which is a hybrid architecture [1] built with the help of supervised training and unsupervised problem clustering. We prove a theorem giving the estimation \(\hat{R}\) of HC risk. The proof works because of an improved way of computing cluster weights, introduced in this paper. Experiments show that \(\hat{R}\) is correlated with HC real error. This allows us to use \(\hat{R}\) as the approximation of HC risk without evaluating HC subclusters. We also show how \(\hat{R}\) can be used in efficient clustering algorithms by comparing HC architectures with different methods of clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corchado, E., Abraham, A., Carvalo, A.C.: Hybrid intelligent algorithms and applications. Information Science 180(14), 2633–2634 (2010)

    Article  MathSciNet  Google Scholar 

  2. Haykin, S.: Neural networks: a comprehensive foundation. Prentice-Hall, Englewood Cliffs (2009)

    MATH  Google Scholar 

  3. Christiani, N., Shawe-Taylor, J.: Support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  4. Bishop, C.: Pattern recognition and machine learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  5. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  6. Tresp, V.: Committee Machines. In: Handbook for Neural network Signal Processing. CRC Press, Boca Raton (2001)

    Google Scholar 

  7. Kearns, M., Valiant, L.: Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the ACM 41(1), 67–95 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shapire, R.E.: The strength of weak learnability. Machine Learning 5, 197–227 (1990)

    Google Scholar 

  9. Freund, Y., Shapire, R.E.: A decision theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  10. Podolak, I.T., Roman, A.: Theoretical foundations and practical results for the hierarchical classifier. Submitted to Computational Intelligence

    Google Scholar 

  11. Podolak, I.T.: Hierarchical Classifier with Overlapping Class Groups. Expert Systems with Applications 34(1), 673–682 (2008)

    Article  Google Scholar 

  12. Podolak, I.T.: Hierarchical rules for a hierarchical classifier. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 749–757. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Wozniak, M., Zmyslony, M.: Designing Fusers on the Basis of Discriminants – Evolutionary and Neural Methods of Training. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS (LNAI), vol. 6076, pp. 590–597. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Shipp, C.A., Kuncheva, L.I.: Relationships between combination methods and measures of diversity in combining classifiers. Information Fusion 3, 135–148 (2002)

    Article  Google Scholar 

  15. Podolak, I., Roman, A.: Fusion of supervised and unsupervised training methods for a multi-class classification problem. Accepted for publication in Pattern Analysis and Applications

    Google Scholar 

  16. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA, http://archive.ics.uci.edu/ml

  17. Efron, B.: Estimating the error rate of a prediction rule: some improvements on cross-validation. Journal of the American Statistical Association 78, 316–331 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Podolak, I.T., Roman, A. (2011). Risk Estimation for Hierarchical Classifier. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds) Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture Notes in Computer Science(), vol 6678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21219-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21219-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21218-5

  • Online ISBN: 978-3-642-21219-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics