Skip to main content

Implications of the Social Brain Hypothesis for Evolving Human-Like Cognition in Digital Organisms

  • Conference paper
Advances in Artificial Life. Darwin Meets von Neumann (ECAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5778))

Included in the following conference series:

  • 1775 Accesses

Abstract

Data show that human-like cognitive traits do not evolve in animals through natural selection. Rather, human-like cognition evolves through runaway selection for social skills. Here, we discuss why social selection may be uniquely effective for promoting human-like cognition, and the conditions that facilitate it. These observations suggest future directions for artificial life research aimed at generating human-like cognition in digital organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bedau, M., McCaskill, J., Packard, N., Rasmussen, S., Adami, C., Green, D., Ikegami, T., Kaneko, K., Ray, T.: Open problems in artificial life. Artificial Life 6, 363–376 (2000)

    Article  Google Scholar 

  2. Dreyfus, H.L.: Why Heideggerian AI failed and how fixing it would require making it more Heideggerian. Artificial Intelligence 171, 1137–1160 (2007)

    Article  Google Scholar 

  3. Emery, N., Clayton, N.: The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306, 1903–1907 (2004)

    Article  Google Scholar 

  4. Flinn, M., Geary, D., Ward, C.: Ecological dominance, social competition, and coalitionary arms races Why humans evolved extraordinary intelligence. Evolution and Human Behavior 26, 10–46 (2005)

    Article  Google Scholar 

  5. Lefebvre, L., Reader, S., Sol, D.: Brains, innovations and evolution in birds and primates. Brain, Behav. Evol. 63, 233–246 (2004)

    Article  Google Scholar 

  6. Marino, L.: Convergence of complex cognitive abilities in cetaceans and primates. Brain Behav. Evol. 59, 21–32 (2002)

    Article  Google Scholar 

  7. Giunchiglia, F., Villafiorita, A., Walsh, T.: A Theory of Abstraction, Universita di Genova facolta di ingegneria, dipartimento informatica sistemistica telematica, Genova, Technical Report MRG/DIST #97-0051 (November 1997)

    Google Scholar 

  8. Nilsson, N.J.: Shakey the robot, SRI International Menlo Park, Menlo Park, CA, Technical note no. 323 A819854 (April 1984)

    Google Scholar 

  9. Brooks, R.A.: Achieving artificial intelligence through building robots, Massachusetts Institute of Technology, Boston, MA, Technical report A.I. Memo 899 (May 1986)

    Google Scholar 

  10. Byrne, R.: Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes, and humans. Oxford University Press, Oxford (1989)

    Google Scholar 

  11. Dunbar, R.: Grooming, gossip, and the evolution of language. Harvard Univ. Pr., Cambridge (1998)

    Google Scholar 

  12. Holekamp, K., Sakai, S., Lundrigan, B.: Social intelligence in the spotted hyena (Crocuta crocuta). Philosophical Transactions of the Royal Society B: Biological Sciences 362, 523 (2007)

    Article  Google Scholar 

  13. Marler, P.: Social cognition: Are primates smarter than birds. Current Ornithology 13, 1–32 (1996)

    Article  Google Scholar 

  14. Schultz, S., Dunbar, R.: Both social and ecological factors predict brain size in ungulates, pp. 207–215 (2006)

    Google Scholar 

  15. Seed, A., Clayton, N., Emery, N.: Cooperative problem solving in rooks (Corvus frugilegus). Proceedings of the Royal Society B: Biological Sciences 275, 1421 (2008)

    Article  Google Scholar 

  16. Iwaniuk, A., Pellis, S., Whishaw, I.: Brain size is not correlated with forelimb dexterity in fissiped carnivores (Carnivora): a comparative test of the principle of proper mass. Brain Behav. Evol. 54, 167–180 (1999)

    Article  Google Scholar 

  17. Bennett, P., Harvey, P.: Relative brain size and ecology in birds. Journal of zoology. Series A 207, 151–169 (1985)

    Google Scholar 

  18. Iwaniuk, A., Dean, K., Nelson, J.: Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): comparisons with other birds and primates. Brain, Behav. Evol. 65, 40–59 (2005)

    Article  Google Scholar 

  19. Chance, M., Mead, A.: Social behaviour and primate evolution. In: Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans (1988)

    Google Scholar 

  20. Reader, S., Laland, K.: Social intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences 99, 4436 (2002)

    Article  Google Scholar 

  21. Perez-Barberia, F., Shultz, S., Dunbar, R., Janis, C.: Evidence for coevolution of sociality and relative brain size in three orders of mammals. Evolution 61, 2811–2821 (2007)

    Article  Google Scholar 

  22. Humphrey, N.: The social function of intellect. In: Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans, pp. 13–26 (1988)

    Google Scholar 

  23. Jolly, A.: Lemur social behavior and primate intelligence. Science 153, 501–506 (1966)

    Article  Google Scholar 

  24. Emery, N., Seed, A., von Bayern, A., Clayton, N.: Cognitive adaptations of social bonding in birds. Philosophical Transactions of the Royal Society B: Biological Sciences 362, 489 (2007)

    Article  Google Scholar 

  25. Pearce, J.: Animal learning and cognition: An introduction. Psychology Pr., San Diego (1997)

    Google Scholar 

  26. Dunbar, R., Bever, J.: Neocortex size predicts group size in carnivores and some insectivores. Ethology 104, 695–708 (1998)

    Article  Google Scholar 

  27. Plotnik, J., de Waal, F., Reiss, D.: Self-recognition in an Asian elephant. Proceedings of the National Academy of Sciences 103, 17053 (2006)

    Article  Google Scholar 

  28. Reiss, D., Marino, L.: Mirror self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proceedings of the National Academy of Sciences 98, 5937 (2001)

    Article  Google Scholar 

  29. Prior, H., Schwarz, A., Güntürkün, O.: Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS Biol. 6, e202 (2008)

    Article  Google Scholar 

  30. Laland, K., Hoppitt, W.: Do animals have culture? Evolutionary Anthropology: Issues, News, and Reviews 12 (2003)

    Google Scholar 

  31. Chick, G.: What is play for? Sexual selection and the evolution of play. Theory in Context and Out, 1 (2001)

    Google Scholar 

  32. Iwaniuk, A., Nelson, J.: Developmental differences are correlated with relative brain size in birds: a comparative analysis. Canadian Journal of Zoology 81, 1913–1928 (2003)

    Article  Google Scholar 

  33. Fitch, W.: The biology and evolution of music: A comparative perspective. Cognition 100, 173–215 (2006)

    Article  Google Scholar 

  34. Sol, D., Duncan, R., Blackburn, T., Cassey, P., Lefebvre, L.: Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences 102, 5460–5465 (2005)

    Article  Google Scholar 

  35. Dunbar, R.: The social brain hypothesis. Brain 9, 10

    Google Scholar 

  36. Nesse, R.: Runaway Social Selection for Displays of Partner Value and Altruism. Biological Theory 2, 143–155 (2007)

    Article  Google Scholar 

  37. Tanaka, Y.: Social selection and the evolution of animal signals. Evolution, 512–523 (1996)

    Google Scholar 

  38. Wolf, J., Brodie III, E., Moore, A.: Interacting phenotypes and the evolutionary process. II. Selection resulting from social interactions. The American Naturalist 153, 254–266 (1999)

    Article  Google Scholar 

  39. Sol, D., Timmermans, S., Lefebvre, L.: Behavioural flexibility and invasion success in birds. Animal Behaviour 63, 495–502 (2002)

    Article  Google Scholar 

  40. Axelrod, R., Hamilton, W.: The evolution of cooperation. Science 211, 1390–1396 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  41. Santos, F., Pacheco, J., Lenaerts, T.: Cooperation prevails when individuals adjust their social ties. PLoS Comput. Biol. 2, e140 (2006)

    Article  Google Scholar 

  42. Adami, C., Brown, C.T.: Evolutionary learning in the 2D artificial life system “Avida”. In: Fourth International Conference on the Synthesis and Simulation of Living Systems (ALife IV), pp. 377–381. MIT Press, Cambridge (1994)

    Google Scholar 

  43. Ray, T.S.: An approach to the synthesis of life. In: Second International Conference on the Synthesis and Simulation of Living Systems (ALife II), vol. 10, pp. 371–408 (1991)

    Google Scholar 

  44. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River (2003)

    MATH  Google Scholar 

  45. Lenton, T.M., Van Oijen, M.: Gaia as a Complex Adaptive System. Philosophical Transactions of the Royal Society: Biological Sciences 357, 683–695 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sadedin, S., Paperin, G. (2011). Implications of the Social Brain Hypothesis for Evolving Human-Like Cognition in Digital Organisms. In: Kampis, G., Karsai, I., Szathmáry, E. (eds) Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer Science(), vol 5778. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21314-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21314-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21313-7

  • Online ISBN: 978-3-642-21314-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics