Skip to main content

Flexible Entrainment in a Bio-inspired Modular Oscillator for Modular Robot Locomotion

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6692))

Included in the following conference series:

  • 1849 Accesses

Abstract

The ability of a Central Pattern Generator to adapt its activity to the mechanical response of the robot is essential for robust autonomous locomotion in unknown environments. In previous works we have introduced a new oscillator model for locomotion in modular robots. In this paper, we study the ability of our oscillator model to entrain a servo. For a given configuration of the oscillator, we simulate different servos with different responsiveness, ranging from very slow to very fast servos. The result is that our oscillator adapts its frequency of oscillation to the responsiveness of the servo up to several orders of magnitude, without changing the parameters of the oscillator itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation 6(1), 14–18 (1994)

    Article  Google Scholar 

  2. Herrero-Carrón, F., Rodríguez, F.B., Varona, P.: Dynamical invariants for CPG control in autonomous robots. In: Filipe, J., Cetto, J.A., Ferrier, J.L. (eds.) 7th International Conference on Informatics in Control, Automation and Robotics, Funchal, Portugal, June 2010, vol. 2, pp. 441–445 (2010)

    Google Scholar 

  3. Herrero-Carrón, F., Rodríguez, F.B., Varona, P.: Novel modular CPG topologies for modular robotics. In: IEEE 2010 International Conference on Robotics and Automation workshop ”Modular Robots: The State of the Art”, pp. 89–93. IEEE, Los Alamitos (2010)

    Google Scholar 

  4. Herrero-Carrón, F., Rodríguez, F.B., Varona, P.: Studying robustness against noise in oscillators for robot control. In: International conference on automation, robotics and control systems, Orlando, USA, pp. 58–63 (July 2010)

    Google Scholar 

  5. Herrero-Carrón, F., Rodríguez, F.B., Varona, P.: Bio-inspired design strategies for central pattern generator control in modular robotics. Bioinspiration & Biomimetics 6(1), 016006+ (2011)

    Google Scholar 

  6. Huerta, R., Varona, P., Rabinovich, M.I., Abarbanel, H.D.: Topology selection by chaotic neurons of a pyloric central pattern generator. Biological Cybernetics 84(1), L1–L8 (2001)

    Google Scholar 

  7. Ijspeert, A.: Central pattern generators for locomotion control in animals and robots: A review. Neural Networks 21(4), 642–653 (2008)

    Article  Google Scholar 

  8. Latorre, R., Rodríguez, F.B., Varona, P.: Neural signatures: multiple coding in spiking-bursting cells. Biological Cybernetics 95(2), 169–183 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Marder, E., Bucher, D.: Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annual Review of Physiology 69(1), 291–316 (2007)

    Article  Google Scholar 

  10. Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006)

    Article  Google Scholar 

  11. Reyes, M., Huerta, R., Rabinovich, M., Selverston, A.: Artificial synaptic modification reveals a dynamical invariant in the pyloric CPG. European Journal of Applied Physiology 102(6), 667–675 (2008)

    Article  Google Scholar 

  12. Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Physical Review E 65(4), 041922+ (2002)

    Google Scholar 

  13. Selverston, A.I., Rabinovich, M.I., Abarbanel, H.D.I., Elson, R., Szucs, A., Pinto, R.D., Huerta, R., Varona, P.: Reliable circuits from irregular neurons: A dynamical approach to understanding central pattern generators. Journal of Physiology-Paris 94(5-6), 357–374 (2000)

    Article  Google Scholar 

  14. Szucs, A., Pinto, R.D., Rabinovich, M.I., Abarbanel, H.D., Selverston, A.I.: Synaptic modulation of the interspike interval signatures of bursting pyloric neurons. Journal of Neurophysiology 89(3), 1363–1377 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herrero-Carrón, F., Rodríguez, F.B., Varona, P. (2011). Flexible Entrainment in a Bio-inspired Modular Oscillator for Modular Robot Locomotion. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21498-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21498-1_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21497-4

  • Online ISBN: 978-3-642-21498-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics