Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 917 Accesses

Abstract

Tool steels are defined as “any steel” that is “used to make tools for cutting, forming, or otherwise shaping a material into a part or component adapted to a definite use”. Despite this definition, large quantities of tool steels are also used for non-tool applications, e.g. for springs, engine parts, bearings and magnetic components, since they offer excellent mechanical properties. The earliest tool steels were plain carbon steels, and only because production processes and technologies improved, it was possible to develop more and more highly alloyed steels with better properties. The history of tool steels will be covered in the subsequent section of this thesis. Nowadays, most tool steels contain large quantities of alloying elements, which range from carbide forming elements like molybdenum, tungsten, vanadium, and chromium to others like manganese and cobalt. The purpose of the alloying elements in the tool steels is the improvement of the mechanical properties in order to meet the ever increasing service demands of these steels, and to provide better dimensional control during the applied heat treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASM (1990) Metals handbook, vol. 3. ASM, Materials Park, OH

    Google Scholar 

  2. Roberts GA, Hamaker JC Jr, Johnson AR (1962) Tool steels, 3rd edn. ASM, Metals Park, OH

    Google Scholar 

  3. Hadfield R (1892) Alloys of iron and chromium. J Iron Steel Inst 42:50–61

    Google Scholar 

  4. Hadfield R (1903) Alloys of iron and tungsten. J Iron Steel Inst 64:40–44

    Google Scholar 

  5. Gregg JL (1934) The alloys of iron and tungsten. McGraw-Hill Book Co, New York

    Google Scholar 

  6. Hellman P (1993) High strength PM high speed steels and tool steels. In: Proceedings of the international conference on materials by powder technology—PTM’93. DGM, Oberusel, Germany, pp 283–294

    Google Scholar 

  7. Roberts G, Krauss G, Kennedy R (1998) Tool steels, 5th edn. ASM, Metals Park, Ohio, USA

    Google Scholar 

  8. Beiss P (1983) PM methods for the production of high speed steels. MPR 4:185–193

    Google Scholar 

  9. Bose A, Eisen WB (2003) Hot consolidation of powders and particulates. MPIF, Princton, NJ, USA

    Google Scholar 

  10. Hellman P, Larker H, Pfeffer JN, Stromblad I (1970) ASEA Stora process: new process for the manufacture of tool steels and other alloy steels from powders. Mod Develop Powder Metall 4:573–582

    Google Scholar 

  11. Zander K (1970) The ASEA-STORA process—production of highly alloyed quality steels by a new QUINTUS process. Powder Met Int 2:129–134

    Google Scholar 

  12. Schulz A, Uhlenwinkel V, Bertrand C, Escher C, Kohlmann R, Kulmburg A, Montero-Pascual MC, Rabitsch R, Schneider R, Stocchi D, Viale D (2005) Sprühkompaktierte hochlegierte Werkzeugstähle-Herstellung und Eigenschaften. HTM 60:87–95

    CAS  Google Scholar 

  13. Spiegelhauer C, Davin H. Properties of spray formed high speed steels. http://www.danspray.com/

  14. Ernst IC, Duh D (2004) Properties of cold-work tool steel X155CrMnVMo12–1 produced via spray froming and conventional ingot casting. J Mater Sci Lett 39:6835–6838

    CAS  Google Scholar 

  15. Liersch A (1994) Einfluß von Festschmierstoffzusätzen auf Verschleißverhalten und Zerspanbarkeit von Sinterstahl. Dissertation, Vienna University of Technology

    Google Scholar 

  16. Collins JA (1993) Failure of materials in mechanical design: analysis, prediction, prevention. Wiley, New York, USA

    Google Scholar 

  17. Callister WDJ (2007) Material science and engineering, 7th edn. Wiley, New York

    Google Scholar 

  18. Suresh S (1992) Fatigue of materials, 1st paperback edn. West Nyack, New York

    Google Scholar 

  19. Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier, Kyushu, Japan

    Google Scholar 

  20. Naito T, Ueda H, Kikuchi M (1984) Fatigue behavior of carburized steel with internal oxides and nonmartensitic microstructure near the surface. Met Trans A 15A:1431–1436

    Article  CAS  Google Scholar 

  21. Naito T, Ueda H, Kikuchi M (1984) Fatigue behavior of carburized steel with internal oxides and nonmartensitic microstructure near the surface. Met Trans A 15A:1431–1436

    Article  CAS  Google Scholar 

  22. Marines I, Dominguez G, Baudry G, Vittori J-F, Rathery S, Doucet J-P, Bathias C (2003) Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz. Int J Fatigue 25:1037–1046

    Article  CAS  Google Scholar 

  23. Wang QY, Bathias C, Kawagoishi N, Chen Q (2002) Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. Int J Fatigue 24:1269–1274

    Article  CAS  Google Scholar 

  24. Furuya Y, Matsuoka S, Abe T (2004) Inclusion-controlled fatigue properties of 1800 MPa—class spring steels. Met Mat Trans A 35A:3737–3744

    Article  CAS  Google Scholar 

  25. Abe T, Furuya Y, Matsuoka S (2004) Gigacycle fatigue properties of 1800 MPa class spring steel. Fatigue Fract Eng Mater Struct 27:159–167

    Article  CAS  Google Scholar 

  26. Furuya Y, Matsuoka S (2004) Gigacycle fatigue properties of a modified-ausformed Si-Mn steel and effects of microstructure. Met Mat Trans A 35A:1715–1723

    Article  CAS  Google Scholar 

  27. Furuya Y, Abe T, Matsuoka S (2003) 1010-Cycle fatigue properties of 1800 MPa-class JIS-SUP7 spring steel. Fatigue Fract Eng Mater Struct 26:641–645

    Article  Google Scholar 

  28. Furuya Y, Matsuoka S, Abe T, Yamaguchi K (2002) Gigacycle fatigue properties for high-strength low-alloy steel at 100 Hz, 600 Hz and 20 kHz. Scripta Mater 46:157–162

    Article  CAS  Google Scholar 

  29. Furuya Y, Matsuoka S, Abe T (2003) A novel inclusion inspection method employing 20 kHz fatigue testing. Met Mat Trans A 34A:2517–2526

    Article  CAS  Google Scholar 

  30. Furuya Y, Matsuoka S (2002) Improvement of gigacycle fatigue properties by modified ausforming in 1600 and 2000 MPa—class low-alloy steel. Metall Mater Trans A 33A:3421–3431

    Article  CAS  Google Scholar 

  31. Itoga H, Ko H-N, Tokaji K, Nakajima M (2004) Effect of inclusion size on step-wise S-N characteristics in high strength steels. VHCF-3: Proceedings of the 3rd international conference on very high cycle fatigue, pp 633–640

    Google Scholar 

  32. Tokaji K, Ko H-N, Nakajima M, Itoga H (2003) Effects of humidity on crack initiation mechanism and associated S-N characteristics in very high strength steels. Mater Sci Eng A A345:197–206

    CAS  Google Scholar 

  33. Melander A, Larsson M (1993) The effect of stress amplitude on the cause of fatigue crack initiation in a spring steel. Int J Fatigue 15:119–131

    Article  CAS  Google Scholar 

  34. Larsson M, Melander A, Nordgren A (1993) Effect of inclusions on fatigue behaviour of hardened spring steel. Mater Sci Technol 9:235–245

    CAS  Google Scholar 

  35. Murakami Y, Yokoyama NN, Nagata J (2002) Mechanism of fatigue failure in ultralong life regime. Fatigue Fract Eng Mater Struct 25:735–746

    Article  CAS  Google Scholar 

  36. Murakami Y, Nomoto T, Ueda T, Murakami Y (2000) On the mechanism of fatigue failure in the superlong life regime (N > 107 cycles). Part I: Influence of hydrogen trapped by inclusions. Fatigue Fract Eng Mater Struct 23:893–902

    Article  CAS  Google Scholar 

  37. Murakami Y, Nomoto T, Ueda T, Murakami Y (2000) On the mechanism of fatigue failure in the superlong life regime (N > 107 cycles). Part II: A fractographic investigation. Fatigue Fract Eng Mater Struct 23:903–910

    Article  CAS  Google Scholar 

  38. Murakami Y, Nomoto T, Ueda T (1999) Factors influencing the mechanism of superlong fatigue failure in steels. Fatigue Fract Eng Mater Struct 22:581–590

    Article  CAS  Google Scholar 

  39. Murakami Y, Takada M, Toriyama T (1998) Super-long life tension-compression fatigue properties of quenched and tempered 0.46% carbon steel. Int J Fatigue 16:661–667

    Article  Google Scholar 

  40. Nishijima S, Kanazawa K (1999) Stepwise S–N curve and fish-eye failure in gigacycle fatigue. Fatigue Fract Eng Mater Struct 22:601–607

    Article  CAS  Google Scholar 

  41. Ochi Y, Matsamura T, Masaki K, Yoshida S (2002) High-cycle rotating bending fatigue property in very long-life regime of high strength steels. Fatigue Fract Eng Mater Struct 25:823–830

    Article  CAS  Google Scholar 

  42. Sakai T, Sato Y, Oguma N (2002) Characteristic S–N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue Fract Eng Mater Struct 25:765–773

    Article  CAS  Google Scholar 

  43. Shiina T, Nakamura T, Noguchi T (2004) A fractographic comparison between fatigue crack propagation of surface-originating fractures in vacuum and interior-originating fractures on high strength steel. In: VHCF-3: Proceedings of the 3rd international conference on very high cycle fatigue, pp 48–55

    Google Scholar 

  44. Shiozawa K, Lu L, Ishihara S (2002) S–N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue Fract Eng Mater Struct 24:781–790

    Google Scholar 

  45. Shiozawa K, Lu L (2002) Very high-cycle fatigue behaviour of shot-peened high-carbon-chromium bearing steel. Fatigue Fract Eng Mater Struct 25:813–822

    Article  CAS  Google Scholar 

  46. Shiozawa K, Morii Y, Nishino S, Lu L (2006) Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime. Fatigue Fract Eng Mater Struct 28:1521–1532

    CAS  Google Scholar 

  47. Tanaka K, Akiniwa Y (2002) Fatigue crack propagation behaviour derived from S–N data in very high cycle regime. Fatigue Fract Eng Mater Struct 25:775–784

    Article  CAS  Google Scholar 

  48. Tanaka K, Akiniwa Y, Miyamoto N (2004) Notch effect on fatigue strength reduction in the very high cycle regime. In: VHCF-3: Proceedings of the 3rd international conference on very high cycle fatigue, pp 56–67

    Google Scholar 

  49. Liu YB, Yang ZG, Li YD, Chen SM, Li SX, Hui WJ, Weng YQ (2008) On the formation of GBF of high-strength steels in the very high cycle fatigue regime. Mater Sci Eng A 497:408–415

    Article  Google Scholar 

  50. Sonsino C (2005) Dauerfestigkeit—eine fiktion. Konstruktion 57:87–92

    Google Scholar 

  51. Mughrabi H (2002) On multi-stage fatigue life diagrams and the relevant life-controlling mechanism in ultrahigh-cycle fatigue. Fatigue Fract Eng Mater Struct 25:755–764

    Article  Google Scholar 

  52. Shiozawa K, Lu L (2008) Internal fatigue failure mechanism of high strength steels in gigacycle regime. Key Eng Mater 378–379:65–80

    Article  Google Scholar 

  53. ASM (1996) Metals handbook, vol 19. ASM, Materials Park, OH

    Google Scholar 

  54. Liaw PK, Wang H, Jiang L, Yang B, Huang JY, Kuo RC, Huang JG (2000) Thermographic detection of fatigue damage of pressure vessel steels at 1000 Hz and 20 Hz. Scripta Mater 42:389–395

    Article  CAS  Google Scholar 

  55. Marines I, Bin X, Bathias C (2003) An understanding of very high cycle fatigue of metals. Int J Fatigue 25:1101–1107

    Article  Google Scholar 

  56. Spoljaric D, Danninger H, Weiss B, Chen DL, Ratzi R (1996) The Effect of Testing Frequency on Fatigue Life of PM Alloy Steels.In: Proceedings of deformation and fracture in structural PM materials, vol 1. pp 147–158

    Google Scholar 

  57. Weiss B, Stickler R (1976) The high frequency test method. In: Proceedings of the ICM-11 ASM, pp 1584–1588

    Google Scholar 

  58. Berns H, Weber L (1986) Fatigue crack growth in the presence of residual stresses.In: Proceedings of the international conference on residual stresses, p 103ff

    Google Scholar 

  59. Masaki K, Ochi Y, Matsumura T (2004) Initiation and propagation behaviour of fatigue cracks in hard-shot peened type 316L steel in high cycle fatigue. Fatigue Fract Eng Mater Struct 27:1137–1145

    Article  CAS  Google Scholar 

  60. Berns H, Trojahn W (1985) Einfluss der Wärmebehandlung auf das Ermüdungsverhalten ledeburitischer Kaltarbeitsstähle. VDI-Z 127:889–892

    CAS  Google Scholar 

  61. Berns H, Lueg J, Trojahn W, Wähling R, Wisell H (1987) The fatigue behavior of conventional and powder metallurgical high speed steels. Powder Metall Int 19:22–26

    CAS  Google Scholar 

  62. Fukaura K, Yokoyama Y, Yokoi D, Tsujii N, Ono K (2004) Fatigue of cold-work tool steels: effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations. Met Mat Trans A 35A:1289–1300

    Article  CAS  Google Scholar 

  63. Marsoner S, Ebner R, Liebfahrt W, Jeglitsch F (2002) Ermüdungsfestigkeit hochfester ledeburitischer PM-Werkzeugstähle. HTM 57:283–289

    CAS  Google Scholar 

  64. Marsoner S, Ebner R, Liebfahrt W (2003) Influence of inclusion content and residual stresses on SN curves of PM tool steels. BHM 148:176–181

    CAS  Google Scholar 

  65. Meurling F, Melander A, Tidesten M, Westin L (2001) Influence of carbide and inclusion contents on the fatigue properties of high speed steels and tool steels. Int J Fatigue 23:215–224

    Article  CAS  Google Scholar 

  66. Parrish G (1977) The influence of microstructure on the properties of case-carburized components. Heat Treat Met 4:107–116

    CAS  Google Scholar 

  67. Abrao AM, Aspinwall DK (1996) The surface integrity of turned and ground hardened bearing steel. Wear 196:279–284

    Article  CAS  Google Scholar 

  68. Ordás N, Penalva ML, Fernández J, García-Rosales C (2003) Residual stresses in tool steel due to hard-turning. J Appl Cryst 36:1135–1143

    Article  Google Scholar 

  69. Axinte DA, Dewes RC (2002) Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. J Mater Proc Techn 127:325–335

    Article  CAS  Google Scholar 

  70. Poggie RA, Wert JJ (1991) The influence of surface finish and strain hardening on near-surface residual stress and the friction and wear behaviour of A2, D2 and CPM-10 V tool steels. Wear 149:209–220

    Article  CAS  Google Scholar 

  71. Xiao KQ, Zhang LC (2006) The effect of compressed cold air and vegetable oil on the subsurface residual stress of ground tool steel. J Mater Proc Techn 178:9–13

    Article  CAS  Google Scholar 

  72. Temmel C, Karlsson B, Ingesten N-G (2006) Fatigue anisotropy in cross-rolled. Hardened medium carbon steel resulting from MnS inclusions. Met Mat Trans A 37A:2995–3007

    Article  CAS  Google Scholar 

  73. Kaynak C, Ankara A, Baker TJ (1996) Inclusion induced anisotropy of short fatigue crack growth in steel. J Mater Sci Technol 12:557–562

    CAS  Google Scholar 

  74. Weiss B, Stickler R, Fembock F, Pfaffinger K (1979) High cycle fatigue and threshold behaviour of powder metallurgical Mo and Mo-alloys. Fatigue Eng Mat Struct 2:73–84

    Article  CAS  Google Scholar 

  75. Weiss B et al (1980) Determination of dKth of Mo-alloys with a 20 kHz method. Metallurgy 34:636ff

    Google Scholar 

  76. Danninger H, Jangg G, Weiss B, Stickler R (1993) Microstructure and mechanical properties of sintered iron: I. Basic considerations and review of the literature. Powder Met Int 25:111–117

    CAS  Google Scholar 

  77. Danninger H, Jangg G, Weiss B, Stickler R (1993) Microstructure and mechanical properties of sintered iron: II. Experimental correlations. Powder Met Int 25:170–173, 219–223

    Google Scholar 

  78. Spoljaric D, Danninger H, Weiss B, Stickler R (1994) Influence of singular defects on the Fatigue strength of low alloyed PM steels. In: Proceedings of PM’94 Powder Metallurgy World Congress, vol 2, pp 827–830

    Google Scholar 

  79. Spoljaric D, Danninger H, Weiss B, Stickler R (1994) Influence of production parameters on the fatigue properties of low alloyed PM steels. In: Proceedings of PM’94 Powder Metallurgy World Congress, vol 2, pp 823–826

    Google Scholar 

  80. Danninger H, Spoljaric D, Weiss B (1997) Microstructural features limiting the performance of PM structural parts. Int J Powder Met 33:43–53

    CAS  Google Scholar 

  81. Hadrboletz A, Weiss B (1997) Fatigue behaviour of iron based sintered material a review. Int Mater Rev 42:1–44

    CAS  Google Scholar 

  82. Danninger H, Weiss B (2003) The influence of defects on high cycle fatigue of metallic materials. J Mat Process Tech 143–144:179–184

    Article  Google Scholar 

  83. Phadke VB, Wise MLH (1983) Metallographic examination of an extrusion punch withdrawn from service. Prakt Metallogr-Pr M 20:621–627

    Google Scholar 

  84. Büchler P (2007) HSC-Fräsen versus Funkenerosion. Maschine + Werkzeug, Spezial Euromold, pp E22–E25

    Google Scholar 

  85. Furuya Y, Matsuoka S, Abe T (2003) A novel inclusion inspection method employing 20 kHz fatigue testing. Met Mat Trans A 34A:2517–2526

    Article  CAS  Google Scholar 

  86. (2006) Raising the game in the demanding world of PM high speed steel. Metal Powder Report 61:16–19

    Google Scholar 

  87. (2005) Less carbides means fewer cracks in tools made from gas-atomised steel. Metal Powder Report 60:36–40

    Google Scholar 

  88. (2006) Finer carbides may mean goodbye to chipped tooling. Metal Powder Report 61: 32–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rudolf Sohar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sohar, C.R. (2011). Introduction. In: Lifetime Controlling Defects in Tool Steels. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21646-6_1

Download citation

Publish with us

Policies and ethics