Skip to main content

Cluster Self-organization of Known and Unknown Environmental Sounds Using Recurrent Neural Network

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2011 (ICANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6791))

Included in the following conference series:

Abstract

Our goal is to develop a system that is able to learn and classify environmental sounds for robots working in the real world. In the real world, two main restrictions pertain in learning. First, the system has to learn using only a small amount of data in a limited time because of hardware restrictions. Second, it has to adapt to unknown data since it is virtually impossible to collect samples of all environmental sounds. We used a neuro-dynamical model to build a prediction and classification system which can self-organize sound classes into parameters by learning samples. The proposed system searches space of parameters for classifying. In the experiment, we evaluated the accuracy of classification for known and unknown sound classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashiya, T., Nakagawa, M.: A Proposal of a Recognition System for the Species of Birds Receiving Birdcalls: An Application of Recognition Systems for Environmental Sound. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 76, 1858–1860 (1993)

    Google Scholar 

  2. Exadaktylos, V., Silva, M., Aerts, J.-M., Taylor, C.J., Berckmans, D.: Real-time recognition of sick pig cough sounds. Computers and Electronics in Agriculture 63, 207–214 (2008)

    Article  Google Scholar 

  3. Sasaki, Y., Kaneyoshi, M., Kagami, S., Mizoguchi, H., Enomoto, T.: Daily sound recognition using pitch-cluster-maps for mobile robot audition. In: Proc. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2724–2729. IEEE Press, St. Louis (2009)

    Chapter  Google Scholar 

  4. Miki, K., Nishimura, T., Nakamura, S., Shikano, K.: Environmental Sound Discrimination Based on Hidden Markov Model. Information Processing Society of Japan SIG Notes 99, 79–84 (1999)

    Google Scholar 

  5. Ogata, T., Ohba, H., Komatani, K., Tani, J., Okuno, H.G.: Extracting Multimodal Dynamics of Objects Using RNNPB. Journal of Robotics and Mechatronics, Special Issue on Human Modeling in Robotics 17, 681–688 (2005)

    Google Scholar 

  6. Tani, J., Ito, M.: Self-organization of behavioral primitives as multiple attractor dynamics: A robot experiment. IEEE Transactions on Systems, Man, and Cybernetics A 33, 481–488 (2003)

    Article  Google Scholar 

  7. Yamashita, Y., Tani, J.: Emergence of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot Experiment. PLoS Comput Biol. 4, e1000220 (2008)

    Google Scholar 

  8. Real World Computing Partnership, RWCP Sound Scene Database, http://tosa.mri.co.jp/sounddb/indexe.htm

  9. Yamakawa, N., Kitahara, T., Takahashi, T., Komatani, K., Ogata, T., Okuno, H.G.: Effects of modelling within- and between-frame temporal variations in power spectra on non-verbal sound recognition. In: Proc. 2010 International Conference on Spoken Language Processing, Makuhari, pp. 2342–2345 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Y., Nishide, S., Takahashi, T., Okuno, H.G., Ogata, T. (2011). Cluster Self-organization of Known and Unknown Environmental Sounds Using Recurrent Neural Network. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6791. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21735-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21735-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21734-0

  • Online ISBN: 978-3-642-21735-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics